
NOTE ON MATH 4010: FUNCTIONAL ANALYSIS

CHI-WAI LEUNG

Throughout this note, all spaces X,Y, .. are normed spaces over the field K = R or C. Let
BX := {x ∈ X : ‖x‖ ≤ 1} and SX := {x ∈ X : ‖x‖ = 1} denote the closed unit ball and the unit
sphere of X respectively.

1. Classical Normed spaces

Proposition 1.1. Let X be a normed space. Then the following assertions are equivalent.

(i) X is a Banach space.
(ii) If a series

∑∞
n=1 xn is absolutely convergent in X, i.e.,

∑∞
n=1 ‖xn‖ < ∞, implies that the

series
∑∞

n=1 xn converges in the norm.

Proof. (i)⇒ (ii) is obvious.
Now suppose that Part (ii) holds. Let (yn) be a Cauchy sequence in X. It suffices to show that
(yn) has a convergent subsequence. In fact, by the definition of a Cauchy sequence, there is a
subsequence (ynk) such that ‖ynk+1

− ynk‖ < 1
2k

for all k = 1, 2.... So by the assumption, the series∑∞
k=1(ynk+1

− ynk) converges in the norm and hence, the sequence (ynk) is convergent in X. The
proof is finished. �

Throughout the note, we write a sequence of numbers as a function x : {1, 2, ...} → K.
The following examples are important classes in the study of functional analysis.

Example 1.2. Put

c0 := {(x(i)) : x(i) ∈ K, lim |x(i)| = 0} and `∞ := {(x(i)) : x(i) ∈ K, sup
i
x(i) <∞}.

Then c0 is a subspace of `∞. The sup-norm ‖ · ‖∞ on `∞ is defined by ‖x‖∞ := supi |x(i)| for
x ∈ `∞. Then `∞ is a Banach space and (c0, ‖ · ‖∞) is a closed subspace of `∞ (Check !) and
hence c0 is also a Banach space too.
Let

c00 := {(x(i)) : there are only finitly many x(i)’s are non-zero}.
Also, c00 is endowed with the sup-norm defined above. Then c00 is not a Banach space (Why?)
but it is dense in c0, that is, c00 = c0 (Check!).

Example 1.3. For 1 ≤ p <∞. Put

`p := {(x(i)) : x(i) ∈ K,
∞∑
i=1

|x(i)|p <∞}.

Also, `p is equipped with the norm ‖x‖p := (

∞∑
i=1

|x(i)|p)
1
p for x ∈ `p. Then `p becomes a Banach

space under the norm ‖ · ‖p.
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Example 1.4. Let X be a locally compact Hausdorff space, for example, K. Let C0(X) be the space
of all continuous K-valued functions f on X which are vanish at infinity, that is, for every ε > 0,
there is a compact subset D of X such that |f(x)| < ε for all x ∈ X \D. Now C0(X) is endowed
with the sup-norm, that is,

‖f‖∞ = sup
x∈X
|f(x)|

for every f ∈ C0(X). Then C0(X) is a Banach space. (Try to prove this fact for the case
X = R. Just use the knowledge from MATH 2060 !!!)

2. Finite Dimensional Normed Spaces

We say that two norms ‖ · ‖ and ‖ · ‖′ on a vector space X are equivalent, write ‖ · ‖ ∼ ‖ · ‖′, if
there are positive numbers c1 and c2 such that c1‖ · ‖ ≤ ‖ · ‖′ ≤ c2‖ · ‖ on X.

Example 2.1. Consider the norms ‖ · ‖1 and ‖ · ‖∞ on `1. We are going to show that ‖ · ‖1 and
‖ · ‖∞ are not equivalent. In fact, if we put xn(i) := (1, 1/2, ..., 1/n, 0, 0, ....) for n, i = 1, 2.... Then
xn ∈ `1 for all n. Notice that (xn) is a Cauchy sequence with respect to the norm ‖ · ‖∞ but it is
not a Cauchy sequence with respect to the norm ‖ · ‖1. Hence ‖ · ‖1 � ‖ · ‖∞ on `1.

Proposition 2.2. All norms on a finite dimensional vector space are equivalent.

Proof. Let X be a finite dimensional vector space and let {e1, ..., en} be a vector base of X. For
each x =

∑n
i=1 αiei for αi ∈ K, define ‖x‖0 =

∑n
i=1 |αi|. Then ‖ · ‖0 is a norm X. The result is

obtained by showing that all norms ‖ · ‖ on X are equivalent to ‖ · ‖0.
Notice that for each x =

∑n
i=1 αiei ∈ X, we have ‖x‖ ≤ ( max

1≤i≤n
‖ei‖)‖x‖0. It remains to find

c > 0 such that c‖ · ‖0 ≤ ‖ · ‖. In fact, let Kn be equipped with the sup-norm ‖ · ‖∞, that is
‖(α1, ..., αn)‖∞ = max1≤1≤n |αi|. Define a real-valued function f on the unit sphere SKn of Kn by

f : (α1, ..., αn) ∈ SKn 7→ ‖α1e1 + · · ·+ αnen‖.
Notice that the map f is continuous and f > 0. It is clear that SKn is compact with respect to the
sup-norm ‖ · ‖∞ on Kn. Hence, there is c > 0 such that f(α) ≥ c > 0 for all α ∈ SKn . This gives
‖x‖ ≥ c‖x‖0 for all x ∈ X as desired. The proof is finished. �

Corollary 2.3. We have the following assertions.

(i) All finite dimensional normed spaces are Banach spaces. Consequently, any finite dimen-
sional subspace of a normed space must be closed.

(ii) The closed unit ball of any finite dimensional normed space is compact.

Proof. Let (X, ‖ · ‖) be a finite dimensional normed space. With the notation as in the proof of
Proposition 2.2 above, we see that ‖ · ‖ must be equivalent to the norm ‖ · ‖0. It is clear that X is
complete with respect to the norm ‖ · ‖0 and so is complete in the original norm ‖ · ‖. The Part (i)
follows.
For Part (ii), it is clear that the compactness of the closed unit ball of X is equivalent to saying
that any closed and bounded subset being compact. Therefore, Part (ii) follows from the simple
observation that any closed and bounded subset of X with respect to the norm ‖ · ‖0 is compact.
The proof is complete. �

In the rest of this section, we are going to show the converse of Corollary 2.3(ii) also holds.
Before this result, we need the following useful result.

Lemma 2.4. Riesz’s Lemma: Let Y be a closed proper subspace of a normed space X. Then for
each θ ∈ (0, 1), there is an element x0 ∈ SX such that d(x0, Y ) := inf{‖x0 − y‖ : y ∈ Y } ≥ θ.
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Proof. Let u ∈ X − Y and d := inf{‖u − y‖ : y ∈ Y }. Notice that since Y is closed, d > 0
and hence, we have 0 < d < d

θ because 0 < θ < 1. This implies that there is y0 ∈ Y such that

0 < d ≤ ‖u − y0‖ < d
θ . Now put x0 := u−y0

‖u−y0‖ ∈ SX . We are going to show that x0 is as desired.

Indeed, let y ∈ Y . Since y0 + ‖u− y0‖y ∈ Y , we have

‖x0 − y‖ =
1

‖u− y0‖
‖u− (y0 + ‖u− y0‖y)‖ ≥ d/‖u− y0‖ > θ.

So, d(x0, Y ) ≥ θ. �

Remark 2.5. The Riesz’s lemma does not hold when θ = 1. The following example can be found
in the Diestel’s interesting book without proof (see [2, Chapter 1 Ex.3(i)]).

Let X = {x ∈ C([0, 1],R) : x(0) = 0} and Y = {y ∈ X :
∫ 1
0 y(t)dt = 0}. Both X and Y are

endowed with the sup-norm. Notice that Y is a closed proper subspace of X. We are going to show
that for any x ∈ SX , there is y ∈ Y such that ‖x − y‖∞ < 1. Thus, the Riesz’s Lemma does not
hold as θ = 1 in this case.
In fact, let x ∈ SX . Since x(0) = 0 with ‖x‖∞ = 1, we can find 0 < a < 1/4 such that |x(t)| ≤ 1/4
for all t ∈ [0, a]. Notice that since x is uniform continuous on [a, 1], for any 0 < ε < 1/4, there
is δ > 0 such that |x(t) − x(t′)| < ε/4 when |t − t′| < δ. Now we find a partition a = t0 < t1 <
· · · < tn = 1 with tk − tk−1 < δ for all k = 1, 2, ...n and |x(tk)| < 1 for all k = 1, 2..., n − 1. Then
sup{|x(t)− x(t′)| : t, t′ ∈ [tk−1, tk]} < ε/4. We let pk−1 := sup{t ∈ [tk−1, tk] : x|[tk−1,t] > −1 + ε} if
it exists, otherwise, put pk−1 := tk−1. Similarly, let qk := inf{t ∈ [tk−1, tk] : x|[t,tk] > −1 + ε} if it
exists, otherwise, put qk := tk. So, one can find a continuous function φ on [a, 1] such that

φ(t) =


ε if t ∈ [tk−1, tk] and x|[tk−1,tk] > −1 + ε.

−ε if t ∈ [pk−1, qk] and x|[tk−1,tk] ≯ −1 + ε.
−2ε

pk−1−tk−1
(t− tk−1) + ε if x|[tk−1,tk] ≯ −1 + ε and tk−1 < t < pk−1.

2ε
tk−qk (t− tk) + ε if x|[tk−1,tk] ≯ −1 + ε and qk < t < tk.

Notice that if x|[tk−1,tk] ≯ −1 + ε, then tk−1 < pk−1 or qk < tk. So, ‖x|[a,1] − φ‖∞ < 1.

It is because ‖φ‖∞ < 2ε, we have |
∫ 1
a φ(t)dt| ≤ 2ε(1 − a). On the other hand, as |x(t)| < 1/4

on [0, a], so if we further choose ε small enough such that (1 − a)(2ε) < a/4, then we can find a
continuous function y1 on [0, a] such that |y1(t)| < 1/4 on [0, a] with ; y1(0) = 0; y1(a) = x(a) and∫ a
0 y1(t)dt = −

∫ 1
a φ(t)dt. Now we define y = y1 on [0, a] and y = φ on [a, 1]. Then ‖y − x‖∞ < 1

and y ∈ Y is as desired.

Theorem 2.6. X is a finite dimensional normed space if and only if the closed unit ball BX of X
is compact.

Proof. The necessary condition has been shown by Proposition 2.3(ii).
Now assume that X is of infinite dimension. Fix an element x1 ∈ SX . Let Y1 = Kx1. Then
Y1 is a proper closed subspace of X. The Riesz’s lemma gives an element x2 ∈ SX such that
‖x1− x2‖ ≥ 1/2. Now consider Y2 = span{x1, x2}. Then Y2 is a proper closed subspace of X since
dimX = ∞. To apply the Riesz’s Lemma again, there is x3 ∈ SX such that ‖x3 − xk‖ ≥ 1/2 for
k = 1, 2. To repeat the same step, there is a sequence (xn) ∈ SX such that ‖xm − xn‖ ≥ 1/2 for
all n 6= m. Thus, (xn) is a bounded sequence without any convergence subsequence. So, BX is not
compact. The proof is finished. �

Recall that a metric space Z is said to be locally compact if for any point z ∈ Z, there is a
compact neighborhood of z. Theorem 2.6 implies the following corollary immediately.

Corollary 2.7. Let X be a normed space. Then X is locally compact if and only if dimX <∞.
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3. Bounded Linear Operators

Proposition 3.1. Let T be a linear operator from a normed space X into a normed space Y . Then
the following statements are equivalent.

(i) T is continuous on X.
(ii) T is continuous at 0 ∈ X.

(iii) sup{‖Tx‖ : x ∈ BX} <∞.

In this case, let ‖T‖ = sup{‖Tx‖ : x ∈ BX} and T is said to be bounded.

Proof. (i)⇒ (ii) is obvious.
For (ii)⇒ (i), suppose that T is continuous at 0. Let x0 ∈ X. Let ε > 0. Then there is δ > 0 such
that ‖Tw‖ < ε for all w ∈ X with ‖w‖ < δ. Therefore, we have ‖Tx− Tx0‖ = ‖T (x− x0)‖ < ε for
any x ∈ X with ‖x− x0‖ < δ. So, (i) follows.
For (ii)⇒ (iii), since T is continuous at 0, there is δ > 0 such that ‖Tx‖ < 1 for any x ∈ X with
‖x‖ < δ. Now for any x ∈ BX with x 6= 0, we have ‖ δ2x‖ < δ. So, we see have ‖T ( δ2x)‖ < 1 and
hence, we have ‖Tx‖ < 2/δ. So, (iii) follows.
Finally, it remains to show (iii)⇒ (ii). Notice that by the assumption of (iii), there is M > 0 such
that ‖Tx‖ ≤ M for all x ∈ BX . So, for each x ∈ X, we have ‖Tx‖ ≤ M‖x‖. This implies that T
is continuous at 0. The proof is complete. �

Corollary 3.2. Let T : X → Y be a bounded linear map. Then we have

sup{‖Tx‖ : x ∈ BX} = sup{‖Tx‖ : x ∈ SX} = inf{M > 0 : ‖Tx‖ ≤M‖x‖, ∀x ∈ X}.

Proof. Let a = sup{‖Tx‖ : x ∈ BX}, b = sup{‖Tx‖ : x ∈ SX} and c = inf{M > 0 : ‖Tx‖ ≤
M‖x‖, ∀x ∈ X}.
It is clear that b ≤ a. Now for each x ∈ BX with x 6= 0, then we have b ≥ ‖T (x/‖x‖)‖ =
(1/‖x‖)‖Tx‖ ≥ ‖Tx‖. So, we have b ≥ a and thus, a = b.
Now if M > 0 satisfies ‖Tx‖ ≤ M‖x‖, ∀x ∈ X, then we have ‖Tw‖ ≤ M for all w ∈ SX . So, we
have b ≤ M for all such M . So, we have b ≤ c. Finally, it remains to show c ≤ b. Notice that by
the definition of b, we have ‖Tx‖ ≤ b‖x‖ for all x ∈ X. So, c ≤ b. �

Proposition 3.3. If X is of finite dimension normed space, then for any linear operator T from
X into a normed space Y must be bounded.

Proof. Let ‖ · ‖0 be the equivalent norm on X defined as in the proof of Proposition 2.2. It is clear
that T is continuous at 0 with respect to the norm ‖ · ‖0. So, T is bounded by Proposition 3.1 at
once. �

Proposition 3.4. Let Y be a closed subspace of X and X/Y be the quotient space. For each
element x ∈ X, put x̄ := x+ Y ∈ X/Y the corresponding element in X/Y . Define

(3.1) ‖x̄‖ = inf{‖x+ y‖ : y ∈ Y }.
If we let π : X → X/Y be the natural projection, that is π(x) = x̄ for all x ∈ X, then (X/Y, ‖ · ‖)
is a normed space and π is bounded with ‖π‖ ≤ 1. In particular, ‖π‖ = 1 as Y is a proper closed
subspace.
Furthermore, if X is a Banach space, then so is X/Y .
In this case, we call ‖ · ‖ in (3.1) the quotient norm on X/Y .

Proof. Notice that since Y is closed, one can directly check that ‖x̄‖ = 0 if and only is x ∈ Y , that
is, x̄ = 0̄ ∈ X/Y . It is easy to check the other conditions of the definition of a norm. So, X/Y is
a normed space. Also, it is clear that π is bounded with ‖π‖ ≤ 1 by the definition of the quotient
norm on X/Y .
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Furthermore, if Y ( X, then by using the Riesz’s Lemma 2.4, we see that ‖π‖ = 1 at once.
We are going to show the last assertion. Suppose that X is a Banach space. Let (x̄n) be a Cauchy
sequence in X/Y . It suffices to show that (x̄n) has a convergent subsequence in X/Y (Why?).
Indeed, since (x̄n) is a Cauchy sequence, we can find a subsequence (x̄nk) of (x̄n) such that

‖x̄nk+1
− x̄nk‖ < 1/2k

for all k = 1, 2.... Then by the definition of quotient norm, there is an element y1 ∈ Y such that
‖xn2 −xn1 +y1‖ < 1/2. Notice that we have, xn1 − y1 = x̄n1 in X/Y . So, there is y2 ∈ Y such that
‖xn2−y2−(xn1−y1)‖ < 1/2 by the definition of quotient norm again. Also, we have xn2 − y2 = x̄n2 .
Then we also have an element y3 ∈ Y such that ‖xn3 −y3− (xn2 −y2)‖ < 1/22. To repeat the same
step, we can obtain a sequence (yk) in Y such that

‖xnk+1
− yk+1 − (xnk − yk)‖ < 1/2k

for all k = 1, 2.... Therefore, (xnk − yk) is a Cauchy sequence in X and thus, limk(xnk − yk) exists
in X while X is a Banach space. Set x = limk(xnk − yk). On the other hand, notice that we have
π(xnk − yk) = π(xnk) for all k = 1, 2, , ,. This tells us that limk π(xnk) = limk π(xnk − yk) = π(x) ∈
X/Y since π is bounded. So, (x̄nk) is a convergent subsequence of (x̄n) in X/Y . The proof is
complete. �

Corollary 3.5. Let T : X → Y be a linear map. Suppose that Y is of finite dimension. Then T
is bounded if and only if kerT := {x ∈ X : Tx = 0}, the kernel of T , is closed.

Proof. The necessary part is clear.
Now assume that kerT is closed. Then by Proposition 3.4, X/ kerT becomes a normed space.

Also, it is known that there is a linear injection T̃ : X/ kerT → Y such that T = T̃ ◦ π, where

π : X → X/ kerT is the natural projection. Since dimY <∞ and T̃ is injective, dimX/ kerT <∞.

This implies that T̃ is bounded by Proposition 3.3. Hence T is bounded because T = T̃ ◦ π and π
is bounded. �

Remark 3.6. The converse of Corollary 3.5 does not hold when Y is of infinite dimension. For
example, let X := {x ∈ `2 :

∑∞
n=1 n

2|x(n)|2 < ∞} (notice that X is a vector space Why?) and
Y = `2. Both X and Y are endowed with ‖ · ‖2-norm.
Define T : X → Y by Tx(n) = nx(n) for x ∈ X and n = 1, 2.... Then T is an unbounded
operator(Check !!). Notice that kerT = {0} and hence, kerT is closed. So, the closeness of kerT
does not imply the boundedness of T in general.

We say that two normed spaces X and Y are said to be isomorphic (resp. isometric isomorphic)
if there is a bi-continuous linear isomorphism (resp. isometric) between X and Y . We also write
X = Y if X and Y are isometric isomorphic.

Recall that a metric space is said to be separable if there is a countable dense subset, for example,
the base field K is separable. Also, it is easy to see that the separability is preserved under a
homeomorphism.

Definition 3.7. We say that a sequence of element (en)∞n=1 in a normed space X is called a
Schauder base for X if for each element x ∈ X, there is a unique sequence of scalars (αn) such that

(3.2) x =

∞∑
n=1

αnen.

Note: The expression in Eq. 3.2 depends on the order of en’s.
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Remark 3.8. Notice that if X has a Scahuder base, then X must be separable. The following
natural question we first raised by Banach (1932).
The base problem: Does every separable Banach space have a Schauder base?
The answer is “No′′!
This problem was completely solved by P. Enflo in 1973.

Example 3.9. We have the following assertions.

(i) The space `∞ is non-separable under the sup-norm ‖·‖∞. Consequently, `∞ has no Schauder
base.

(ii) The spaces c0 and `p for 1 ≤ p <∞ have Schauder bases.

Proof. For Part (i) let D = {x ∈ `∞ : x(i) = 0 or 1}. Then D is an uncountable set and
‖x − y‖∞ = 1 for x 6= y. Therefore {B(x, 1/4) : x ∈ D} is an uncountable family of disjoint open
balls. So, `∞ has no countable dense subset.
For each n = 1, 2..., let en(i) = 1 if n = i, otherwise, is equal to 0.
Also, (en) is a Schauder base for the space c0 and `p for 1 ≤ p <∞. �

Proposition 3.10. Let X and Y be normed spaces. Let B(X,Y ) be the set of all bounded linear
maps from X into Y . For each element T ∈ B(X,Y ), let

‖T‖ = sup{‖Tx‖ : x ∈ BX}.
be defined as in Proposition 3.1.
Then (B(X,Y ), ‖ · ‖) becomes a normed space.
Furthermore, if Y is a Banach space, then so is B(X,Y ).

Proof. One can directly check that B(X,Y ) is a normed space (Do It By Yourself!).
We are going to show that B(X,Y ) is complete if Y is a Banach space. Let (Tn) be a Cauchy
sequence in L(X,Y ). Then for each x ∈ X, it is easy to see that (Tnx) is also a Cauchy sequence
in Y . So, limTnx exists in Y for each x ∈ X because Y is complete. Hence, one can define a map
Tx := limTnx ∈ Y for each x ∈ X. It is clear that T is a linear map from X into Y .
It needs to show that T ∈ L(X,Y ) and ‖T −Tn‖ → 0 as n→∞. Let ε > 0. Since (Tn) is a Cauchy
sequence in L(X,Y ), there is a positive integer N such that ‖Tm−Tn‖ < ε for all m,n ≥ N . So, we
have ‖(Tm − Tn)(x)‖ < ε for all x ∈ BX and m,n ≥ N . Taking m→∞, we have ‖Tx− Tnx‖ ≤ ε
for all n ≥ N and x ∈ BX . Therefore, we have ‖T − Tn‖ ≤ ε for all n ≥ N . From this, we see
that T − TN ∈ B(X,Y ) and thus, T = TN + (T − TN ) ∈ B(X,Y ) and ‖T − Tn‖ → 0 as n → ∞.
Therefore, limn Tn = T exists in B(X,Y ). �

4. Dual Spaces

By Proposition 3.10, we have the following assertion at once.

Proposition 4.1. Let X be a normed space. Put X∗ = B(X,K). Then X∗ is a Banach space and
is called the dual space of X.

Example 4.2. Let X = KN . Consider the usual Euclidean norm on X, that is, ‖(x1, ..., xN )‖ :=√
|x1|2 + · · · |xN |2. Define θ : KN → (KN )∗ by θx(y) = x1y1 + · · · + xNyN for x = (x1, ..., xN )

and y = (y1, ..., yN ) ∈ KN . Notice that θx(y) = 〈x, y〉, the usual inner product on KN . Then by
the Cauchy-Schwarz inequality, it is easy to see that θ is an isometric isomorphism. Therefore, we
have KN = (KN )∗.
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Example 4.3. Define a map T : `1 → c∗0 by

(Tx)(η) =

∞∑
i=1

x(i)η(i)

for x ∈ `1 and η ∈ c0.
Then T is isometric isomorphism and hence, c∗0 = `1.

Proof. The proof is divided into the following steps.
Step 1. Tx ∈ c∗0 for all x ∈ `1.
In fact, let η ∈ c0. Then

|Tx(η)| ≤ |
∞∑
i=1

x(i)η(i)| ≤
∞∑
i=1

|x(i)||η(i)| ≤ ‖x‖1‖η‖∞.

So, Step 1 follows.
Step 2. T is an isometry.
Notice that by Step 1, we have ‖Tx‖ ≤ ‖x‖1 for all x ∈ `1. It needs to show that ‖Tx‖ ≥ ‖x‖1 for
all x ∈ `1. Fix x ∈ `1. Now for each k = 1, 2.., consider the polar form x(k) = |x(k)|eiθk . Notice
that ηn := (e−iθ1 , ..., e−iθn , 0, 0, ....) ∈ c0 for all n = 1, 2.... Then we have

n∑
k=1

|x(k)| =
n∑
k=1

x(k)ηn(k) = Tx(ηn) = |Tx(ηn)| ≤ ‖Tx‖

for all n = 1, 2.... So, we have ‖x‖1 ≤ ‖Tx‖.
Step 3. T is a surjection.
Let φ ∈ c∗0 and let ek ∈ c0 be given by ek(j) = 1 if j = k, otherwise, is equal to 0. Put x(k) := φ(ek)
for k = 1, 2... and consider the polar form x(k) = |x(k)|eiθk as above. Then we have

n∑
k=1

|x(k)| = φ(

n∑
k=1

e−iθkek) ≤ ‖φ‖‖
n∑
k=1

e−iθkek‖∞ = ‖φ‖

for all n = 1, 2.... Therefore, x ∈ `1.
Finally, we need to show that Tx = φ and thus, T is surjective. In fact, if η =

∑∞
k=1 η(k)ek ∈ c0,

then we have

φ(η) =
∞∑
k=1

η(k)φ(ek) =
∞∑
k=1

η(k)xk = Tx(η).

So, the proof is finished by the Steps 1-3 above. �

Example 4.4. We have the other important examples of the dual spaces.

(i) (`1)∗ = `∞.
(ii) For 1 < p <∞, (`p)∗ = `q, where 1

p + 1
q = 1.

(iii) For a locally compact Hausdorff space X, C0(X)∗ = M(X), where M(X) denotes the space
of all regular Borel measures on X.

Parts (i) and (ii) can be obtained by the similar argument as in Example 4.3 (see also in [3, Chapter
8]). Part (iii) is known as the Riesz representation Theorem which is referred to [3, Section 21.5]
for the details.
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5. Hahn-Banach Theorem

All spaces X,Y, Z... are normed spaces over the field K throughout this section.

Lemma 5.1. Let Y be a subspace of X and v ∈ X \ Y . Let Z = Y ⊕ Kv be the linear span of Y
and v in X. If f ∈ Y ∗, then there is an extension F ∈ Z∗ of f such that ‖F‖ = ‖f‖.

Proof. We may assume that ‖f‖ = 1 by considering the normalization f/‖f‖ if f 6= 0.
Case K = R:
We first note that since ‖f‖ = 1, we have |f(x)− f(y)| ≤ ‖(x+ v)− (y+ v)‖ for all x, y ∈ Y . This
implies that −f(x)−‖x+v‖ ≤ −f(y)+‖y+v‖ for all x, y ∈ Y . Now let γ = sup{−f(x)−‖x+v‖ :
x ∈ X}. This implies that γ exists and

(5.1) −f(y)− ‖y + v‖ ≤ γ ≤ −f(y) + ‖y + v‖

for all y ∈ Y . We define F : Z −→ R by F (y + αv) := f(y) + αγ. It is clear that F |Y = f . For
showing F ∈ Z∗ with ‖F‖ = 1, since F |Y = f on Y and ‖f‖ = 1, it needs to show |F (y + αv)| ≤
‖y + αv‖ for all y ∈ Y and α ∈ R.
In fact, for y ∈ Y and α > 0, then by inequality 5.1, we have

(5.2) |F (y + αv)| = |f(y) + αγ| ≤ ‖y + αv‖.

Since y and α are arbitrary in inequality 5.2, we see that |F (y+αv)| ≤ ‖y+αv‖ for all y ∈ Y and
α ∈ R. Therefore the result holds when K = R.
Now for the complex case, let h = Ref and g = Imf . Then f = h+ ig and f, g both are real linear
with ‖h‖ ≤ 1. Note that since f(iy) = if(y) for all y ∈ Y , we have g(y) = −h(iy) for all y ∈ Y .
This gives f(·) = h(·)− ih(i·) on Y . Then by the real case above, there is a real linear extension H
on Z := Y ⊕Rv⊕ iRv of h such that ‖H‖ = ‖h‖. Now define F : Z −→ C by F (·) := H(·)− iH(i·).
Then F ∈ Z∗ and F |Y = f . Thus it remains to show that ‖F‖ = ‖f‖ = 1. It needs to show
that |F (z)| ≤ ‖z‖ for all z ∈ Z. Note for z ∈ Z, consider the polar form F (z) = reiθ. Then
F (e−iθz) = r ∈ R and thus F (e−iθz) = H(e−iθz). This yields that

|F (z)| = r = |F (e−iθz)| = |H(e−iθz)| ≤ ‖H‖‖e−iθz‖ ≤ ‖z‖.

The proof is finished. �

Remark 5.2. Before completing the proof of the Hahn-Banach Theorem, Let us first recall one
of super important results in mathematics, called Zorn’s Lemma, a very humble name. Every
mathematics student should know it.

Zorn’s Lemma: Let X be a non-empty set with a partially order “ ≤ ”. Assume that every totally
order subset C of X has an upper bound, i.e. there is an element z ∈ X such that c ≤ z for all c ∈ C.
Then X must contain a maximal element m, that is, if m ≤ x for some x ∈ X, then m = x.

The following is the typical argument of applying the Zorn’s Lemma.

Theorem 5.3. Hahn-Banach Theorem : Let X be a normed space and let Y be a subspace of
X. If f ∈ Y ∗, then there exists a linear extension F ∈ X∗ of f such that ‖F‖ = ‖f‖.

Proof. Let X be the collection of the pairs (Y1, f1), where Y ⊆ Y1 is a subspace of X and f1 ∈ Y ∗1
such that f1|Y = f and ‖f1‖Y ∗1 = ‖f‖Y ∗ . Define a partial order ≤ on X by (Y1, f1) ≤ (Y2, f2) if

Y1 ⊆ Y2 and f2|Y1 = f1. Then by the Zorn’s lemma, there is a maximal element (Ỹ , F ) in X. The

maximality of (Ỹ , F ) and Lemma 5.1 will give Ỹ = X. The proof is finished. �
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Proposition 5.4. Let X be a normed space and x0 ∈ X. Then there is f ∈ X∗ with ‖f‖ = 1 such
that f(x0) = ‖x0‖. Consequently, we have

‖x0‖ = sup{|g(x)| : g ∈ BX∗}.

Also, if x, y ∈ X with x 6= y, then there exists f ∈ X∗ such that f(x) 6= f(y).

Proof. Let Y = Kx0. Define f0 : Y → K by f0(αx0) := α‖x0‖ for α ∈ K. Then f0 ∈ Y ∗ with
‖f0‖ = ‖x0‖. So, the result follows from the Hahn-Banach Theorem at once. �

Remark 5.5. Proposition 5.4 tells us that the dual space X∗ of X must be non-zero. Indeed, the
dual space X∗ is very “Large′′ so that it can separate any pair of distinct points in X.
Furthermore, for any normed space Y and any pair of points x1, x2 ∈ X with x1 6= x2, we can
find an element T ∈ B(X,Y ) such that Tx1 6= Tx2. In fact, fix a non-zero element y ∈ Y . Then
by Proposition 5.4, there is f ∈ X∗ such that f(x1) 6= f(x2). So, if we define Tx = f(x)y, then
T ∈ B(X,Y ) as desired.

Proposition 5.6. With the notation as above, if M is closed subspace and v ∈ X \M , then there
is f ∈ X∗ such that f(M) ≡ 0 and f(v) 6= 0.

Proof. Since M is a closed subspace of X, we can consider the quotient space X/M . Let π : X →
X/M be the natural projection. Notice that v̄ := π(v) 6= 0 ∈ X/M because v̄ ∈ X \M . Then by
Corollary 5.4, there is a non-zero element f̄ ∈ (X/M)∗ such that f̄(v̄) 6= 0. So, the linear functional
f := f̄ ◦ π ∈ X∗ is as desired. �

Proposition 5.7. Using the notation as above, if X∗ is separable, then X is separable.

Proof. Let F := {f1, f2....} be a dense subset of X∗. Then there is a sequence (xn) in X with
‖xn‖ = 1 and |fn(xn)| ≥ 1/2‖fn‖ for all n. Now let M be the closed linear span of xn’s. Then M
is a separable closed subspace of X. We are going to show that M = X.
Suppose not. Proposition 5.6 will give us a non-zero element f ∈ X∗ such that f(M) ≡ 0. Since
{f1, f2....} is dense in X∗, we have B(f, r) ∩ F 6= ∅ for all r > 0. Therefore, if B(f, r) ∩ F 6= is
finite for some r > 0, then f = fm for some fm ∈ F . This implies that ‖f‖ = ‖fm‖ ≤ 2|fm(xm)| =
2|f(xm)| = 0 and thus, f = 0 which contradicts to f 6= 0.
So, B(f, r) ∩ F is infinite for all r > 0. In this case, there is a subsequence (fnk) such that
‖fnk − f‖ → 0. This gives

1

2
‖fnk‖ ≤ |fnk(xnk)| = |fnk(xnk)− f(xnk)| ≤ ‖fnk − f‖ → 0

because f(M) ≡ 0. So ‖fnk‖ → 0 and hence f = 0. It leads to a contradiction again. Thus, we
can conclude that M = X as desired. �

Remark 5.8. The converse of Proposition 5.7 does not hold. For example, consider X = `1. Then
`1 is separable but the dual space (`1)∗ = `∞ is not.

Proposition 5.9. Let X and Y be normed spaces. For each element T ∈ B(X,Y ), define a linear
operator T ∗ : Y ∗ → X∗ by

T ∗y∗(x) := y∗(Tx)

for y∗ ∈ Y ∗ and x ∈ X. Then T ∗ ∈ B(Y ∗, X∗) and ‖T ∗‖ = ‖T‖. In this case, T ∗ is called the
adjoint operator of T .
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Proof. We first claim that ‖T ∗‖ ≤ ‖T‖ and hence, ‖T ∗‖ is bounded.
In fact, for any y∗ ∈ Y ∗ and x ∈ X, we have |T ∗y∗(x)| = |y∗(Tx)| ≤ ‖y∗‖‖T‖‖x‖. So, ‖T ∗y∗‖ ≤
‖T‖‖y∗‖ for all y∗ ∈ Y ∗. Thus, ‖T ∗‖ ≤ ‖T‖.
It remains to show ‖T‖ ≤ ‖T ∗‖. Let x ∈ BX . Then by Proposition 5.4, there is y∗ ∈ SX∗ such
that ‖Tx‖ = |y∗(Tx)| = |T ∗y∗(x)| ≤ ‖T ∗y∗‖ ≤ ‖T ∗‖. This implies that ‖T‖ ≤ ‖T ∗‖. �

Example 5.10. Let X and Y be the finite dimensional normed spaces. Let (ei)
n
i=1 and (fj)

m
j=1 be

the bases for X and Y respectively. Let θX : X → X∗ and θY : X → Y ∗ be the identifications as
in Example 4.2. Let e∗i := θXei ∈ X∗ and f∗j := θY fj ∈ Y ∗. Then e∗i (el) = δil and f∗j (fl) = δjl,
where, δil = 1 if i = l; otherwise is 0.
Now if T ∈ B(X,Y ) and (aij)m×n is the representative matrix of T corresponding to the bases
(ei)

n
i=1 and (fj)

m
j=1 respectively, then akl = f∗k (Tel) = T ∗f∗k (el). Therefore, if (a′lk)n×m is the

representative matrix of T ∗ corresponding to the bases (f∗j ) and (e∗i ), then akl = a′lk. Hence the

transpose (akl)
t is the the representative matrix of T ∗.

Proposition 5.11. Let Y be a closed subspace of a normed space X. Let i : Y → X be the natural
inclusion and π : X → X/Y the natural projection. Then

(i) the adjoint operator i∗∗ : Y ∗∗ → X∗∗ is an isometry.
(ii) the adjoint operator π∗ : (X/Y )∗ → X∗ is an isometry.

Consequently, Y ∗∗ and (X/Y )∗ can be viewed as the closed subspaces of X∗∗ and X∗ respectively.

Proof. For Part (i), we first notice that for any x∗ ∈ X∗, the image i∗x∗ in Y ∗ is just the restriction
of x∗ on Y , write x∗|Y . Now let φ ∈ Y ∗∗. Then for any x∗ ∈ X∗, we have

|i∗∗φ(x∗)| = |φ(i∗x∗)| = |φ(x∗|Y )| ≤ ‖φ‖‖x∗|Y ‖Y ∗ ≤ ‖φ‖‖x∗‖X∗ .

So, ‖i∗∗φ‖ ≤ ‖φ‖. It remains to show the inverse inequality. Now for each y∗ ∈ Y ∗, the Hahn-
Banach Theorem gives an element x∗ ∈ X∗ such that ‖x∗‖X∗ = ‖y∗‖Y ∗ and x∗|Y = y∗ and hence,
i∗x∗ = y∗. Then we have

|φ(y∗)| = |φ(x∗|Y )| = |φ(i∗x∗)| = |(i∗∗ ◦ φ)(x∗)| ≤ ‖i∗∗φ‖‖x∗‖X∗ = ‖i∗∗φ‖‖y∗‖Y ∗

for all y∗ ∈ Y ∗. Therefore, we have ‖i∗∗φ‖ = ‖φ‖.
For Part (ii), let ψ ∈ (X/Y )∗. Notice that since ‖π∗‖ = ‖π‖ ≤ 1, we have ‖π∗ψ‖ ≤ ‖ψ‖. On the
other hand, for each x̄ := π(x) ∈ X/Y with ‖x̄‖ < 1, we can choose an element m ∈ Y such that
‖x+m‖ < 1. So, we have

|ψ(x̄)| = |ψ ◦ π(x)| = |ψ ◦ π(x+m)‖ ≤ ‖ψ ◦ π‖ = ‖π∗(ψ)‖.

Thus we have ‖ψ‖ ≤ ‖π∗(ψ)‖. The proof is finished. �

Remark 5.12. By using Proposition 5.11, we can give an alternative proof of the Riesz’s Lemma
2.4.
With the notation as in Proposition 5.11, if Y ( X, then we have ‖π‖ = ‖π∗‖ = 1 because π∗ is an
isometry by Proposition 5.11(ii). Thus we have ‖π‖ = sup{‖π(x)‖ : x ∈ X, ‖x‖ = 1} = 1. So, for
any 0 < θ < 1, we can find element z ∈ X with ‖z‖ = 1 such that θ < ‖π(z)‖ = inf{‖z+y‖ : y ∈ Y }.
The Riesz’s Lemma follows.

6. Reflexive Spaces

Proposition 6.1. For a normed space X, let Q : X −→ X∗∗ be the canonical map, that is,
Qx(x∗) := x∗(x) for x∗ ∈ X∗ and x ∈ X. Then Q is an isometry.



11

Proof. Note that for x ∈ X and x∗ ∈ BX∗ , we have |Q(x)(x∗)| = |x∗(x)| ≤ ‖x‖. Then ‖Q(x)‖ ≤
‖x‖.
It remains to show that ‖x‖ ≤ ‖Q(x)‖ for all x ∈ X. In fact, for x ∈ X, there is x∗ ∈ X∗ with
‖x∗‖ = 1 such that ‖x‖ = |x∗(x)| = |Q(x)(x∗)| by Proposition 5.4. Thus we have ‖x‖ ≤ ‖Q(x)‖.
The proof is finished. �

Remark 6.2. Let T : X → Y be a bounded linear operator and T ∗∗ : X∗∗ → Y ∗∗ the second
dual operator induced by the adjoint operator of T . With notation as in Proposition 6.1 above,
the following diagram always commutes.

X
T−−−−→ Y

QX

y yQY
X∗∗

T ∗∗−−−−→ Y ∗∗

Definition 6.3. A normed space X is said to be reflexive if the canonical map Q : X −→ X∗∗ is
surjective. (Notice that every reflexive space must be a Banach space.)

Example 6.4. We have the following examples.

(i) : Every finite dimensional normed space X is reflexive.
(ii) : `p is reflexive for 1 < p <∞.

(iii) : c0 and `1 are not reflexive.

Proof. For Part (i), if dimX <∞, then dimX = dimX∗∗. Hence, the canonical map Q : X → X∗∗

must be surjective.
Part (ii) follows from (`p)∗ = `q for 1 < p <∞, 1

p + 1
q = 1.

For Part (iii), notice that c∗∗0 = (`1)∗ = `∗∗. Since `∞ is non-separable but c0 is separable. So, the
canonical map Q from c0 to c∗∗0 = `∞ must not be surjective.
For the case of `1, we have (`1)∗∗ = (`∞)∗. Since `∞ is non-separable, the dual space (`∞)∗ is
non-separable by Proposition 5.7. So, `1 6= (`1)∗∗. �

Proposition 6.5. Every closed subspace of a reflexive space is reflexive.

Proof. Let Y be a closed subspace of a reflexive space X. Let QY : Y → Y ∗∗ and QX : X → X∗∗ be
the canonical maps as before. Let y∗∗0 ∈ Y ∗∗. We define an element φ ∈ X∗∗ by φ(x∗) := y∗∗0 (x∗|Y )
for x∗ ∈ X∗. Since X is reflexive, there is x0 ∈ X such that QXx0 = φ. Suppose x0 /∈ Y . Then
by Proposition 5.6, there is x∗0 ∈ X∗ such that x∗0(x0) 6= 0 but x∗0(Y ) ≡ 0. Note that we have
x∗0(x0) = QXx0(x

∗
0) = φ(x∗0) = y∗∗0 (x∗0|Y ) = 0. It leads to a contradiction. So, x0 ∈ Y . The proof is

finished if we have QY (x0) = y∗∗0 .
In fact, for each y∗ ∈ Y ∗, then by the Hahn-Banach Theorem, y∗ has a continuous extension x∗ in
X∗. Then we have

QY (x0)(y
∗) = y∗(x0) = x∗(x0) = QX(x0)(x

∗) = φ(x∗) = y∗∗0 (x∗|Y ) = y∗∗0 (y∗).

�

Example 6.6. By using Proposition 6.5, we immediately see that the space `∞ is not reflexive
because it contains a non-reflexive closed subspace c0.

Proposition 6.7. Let X be a normed space. Then we have the following assertions.

(i) X is reflexive if and only if the dual space X∗ is reflexive.
(ii) If X is reflexive, then so is every quotient of X.
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Proof. For Part (i), suppose that X is reflexive first. Let z̃ ∈ X∗∗∗. Then the restriction z := z̃|X ∈
X∗. Then one can directly check that Qz = z on X∗∗ since X∗∗ = X.
For the converse, assume that X∗ is reflexive but X is not. So, X is a proper closed subspace of
X∗∗. Then by using the Hahn-Banach Theorem, we can find a non-zero element φ ∈ X∗∗∗ such
that φ(X) ≡ 0. However, since X∗∗∗ is reflexive, we have φ ∈ X∗ and hence, φ = 0 which leads to
a contradiction.
For Part (ii), we assume that X is reflexive. Let M be a closed subspace of X and π : X → X/M
the natural projection. Notice that the adjoint operator π∗ : (X/M)∗ → X∗ is an isometry (Check
!). So, (X/M)∗ can be viewed as a closed subspace of X∗. So, by Part (i) and Proposition 6.5, we
see that (X/M)∗ is reflexive. Then X/M is reflexive by using Part (i) again.
The proof is complete. �

Lemma 6.8. Let M be a closed subspace of a normed space X. Let r : X∗ →M∗ be the restriction
map, that is x∗ ∈ X∗ 7→ x∗|M ∈ M∗. Put M⊥ := ker r := {x∗ ∈ X∗ : x∗(M) ≡ 0}. Then the
canonical linear isomorphism r̃ : X∗/M⊥ →M∗ induced by r is an isometric isomorphism.

Proof. We first note that r is surjective by using the Hahn-Banach Theorem. It needs to show that
r̃ is an isometry. Notice that r̃(x∗ +M⊥) = x∗|M for all x∗ ∈ X∗. Now for any x∗ ∈ X∗, we have
‖x∗+y∗‖X∗ ≥ ‖x∗+y∗‖M∗ = ‖x∗|M‖M∗ for all y∗ ∈M⊥. So we have ‖r̃(x∗+M⊥)‖ = ‖x∗|M‖M∗ ≤
‖x∗ +M⊥‖. It remains to show the reverse inequality.
Now for any x∗ ∈ X∗, then by the Hahn-Banach Theorem again, there is z∗ ∈ X∗ such that
z∗|M = x∗|M and ‖z∗‖ = ‖x∗|M‖M∗ . Then x∗− z∗ ∈M⊥ and hence, we have x∗+M⊥ = z∗+M⊥.
This implies that

‖x∗ +M⊥‖ = ‖z∗ +M⊥‖ ≤ ‖z∗‖ = ‖x∗|M‖M∗ = ‖r̃(x∗ +M⊥)‖.
The proof is complete. �

Proposition 6.9. (Three space property): Let M be a closed subspace of a normed space X.
If M and the quotient space X/M both are reflexive, then so is X.

Proof. Let π : X → X/M be the natural projection. Let ψ ∈ X∗∗. We going to show that
ψ ∈ im(QX). Since π∗∗(ψ) ∈ (X/M)∗∗, there exists x0 ∈ X such that π∗∗(φ) = QX/M (x0 + M)
because X/M is reflexive. So we have

π∗∗(ψ)(x̄∗) = QX/M (x0 +M)(x̄∗)

for all x̄∗ ∈ (X/M)∗. This implies that

ψ(x̄∗ ◦ π) = ψ(π∗x̄∗) = π∗∗(ψ)(x̄∗) = QX/M (x0 +M)(x̄∗) = x̄∗(x0 +M) = QXx0(x̄
∗ ◦ π)

for all x̄∗ ∈ (X/M)∗. Therefore, we have

ψ = QXx0 on M⊥.

So, we have ψ − QX(x0) ∈ X∗/M⊥. Let f : M∗ → X∗/M⊥ be the inverse of the isometric
isomorphism r̃ which is defined as in Lemma 6.8. Then the composite (ψ − QXx0) ◦ f : M∗ →
X∗/M⊥ → K lies in M∗∗. Then by the reflexivity of M , there is an element m0 ∈M such that

(ψ −QXx0) ◦ f = QM (m0) ∈M∗∗.
On the other hand, notice that for each x∗ ∈ X∗, we can find an element m∗ ∈ M∗ such that
f(m∗)x∗ +M |bot ∈ X∗/M⊥ because f is surjective, moreover, by the construction of r̃ in Lemma
6.8, we see that x∗|M = m∗. This gives

ψ(x∗)− x∗(x0) = (ψ −QXx0)(m∗) ◦ f = QM (m0)(m
∗) = m∗(m0) = x∗(m0).

Thus, we have ψ(x∗) = x∗(x0+m0) for all x∗ ∈ X∗. From this we have ψ = QX(x0+m0) ∈ im(QX)
as desired. The proof is complete. �
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7. Weakly convergent and Weak∗ convergent

Definition 7.1. Let X be a normed space. A sequence (xn) is said to be weakly convergent if there
is x ∈ X such that f(xn)→ f(x) for all f ∈ X∗. In this case, x is called a weak limit of (xn).

Proposition 7.2. A weak limit of a sequence is unique if it exists. In this case, if (xn) weakly

converges to x, write x = w-lim
n
xn or xn

w−→ x.

Proof. The uniqueness follows from the Hahn-Banach Theorem immediately. �

Remark 7.3. It is clear that if a sequence (xn) converges to x ∈ X in norm, then xn
w−→ x.

However, the weakly convergence of a sequence does not imply the norm convergence.
For example, consider X = c0 and (en). Then f(en) → 0 for all f ∈ c∗0 = `1 but (en) is not
convergent in c0.

Proposition 7.4. Suppose that X is finite dimensional. A sequence (xn) in X is norm convergent
if and only if it is weakly convergent.

Proof. Suppose that (xn) weakly converges to x. Let B := {e1, .., eN} be a base for X and let fk be

the k-th coordinate functional corresponding to the base B, that is v =
∑N

k=1 fk(v)ek for all v ∈ X.
Since dimX < ∞, we have fk in X∗ for all k = 1, ..., N . Therefore, we have limn fk(xn) = fk(x)
for all k = 1, ..., N . So, we have ‖xn − x‖ → 0. �

Definition 7.5. Let X be a normed space. A sequence (fn) in X∗ is said to be weak∗ convergent
if there is f ∈ X∗ such that limn fn(x) = f(x) for all x ∈ X, that is fn point-wise converges to f .

In this case, f is called the weak∗ limit of (fn). Write f = w∗-limn fn or fn
w∗−−→ f .

Remark 7.6. In the dual space X∗ of a normed space X, we always have the following implications:

“Norm Convergent” =⇒ “Weakly Convergent” =⇒ “Weak∗ Convergent”.

However, the converse of each implication does not hold.

Example 7.7. Remark 7.3 has shown that the w-convergence does not imply ‖ · ‖-convergence.
We now claim that the w∗-convergence also Does Not imply the w-convergence.
Consider X = c0. Then c∗0 = `1 and c∗∗0 = (`1)∗ = `∞. Let e∗n = (0, ...0, 1, 0...) ∈ `1 = c∗0, where

the n-th coordinate is 1. Then e∗n
w∗−−→ 0 but e∗n 9 0 weakly because e∗∗(e∗n) ≡ 1 for all n, where

e∗∗ := (1, 1, ...) ∈ `∞ = c∗∗0 . Hence the w∗-convergence does not imply the w-convergence.

Proposition 7.8. Let (fn) be a sequence in X∗. Suppose that X is reflexive. Then fn
w−→ f if and

only if fn
w∗−−→ f .

In particular, if dimX <∞, then the followings are equivalent:

(i) : fn
‖·‖−−→ f ;

(ii) : fn
w−→ f ;

(iii) : fn
w∗−−→ f .

Theorem 7.9. (Banach) : Let X be a separable normed space. If (fn) is a bounded sequence in
X∗, then it has a w∗-convergent subsequence.

Proof. Let D := {x1, x2, ...} be a countable dense subset of X. Note that since (fn)∞n=1 is bounded,
(fn(x1)) is a bounded sequence in K. Then (fn(x1)) has a convergent subsequence, say (f1,k(x1))

∞
k=1

in K. Let c1 := limk f1,k(x1). Now consider the bounded sequence (f1,k(x2)). Then there is
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convergent subsequence, say (f2,k(x2)), of (f1,k(x2)). Put c2 := limk f2,k(x2). Notice that we still
have c1 = limk f2,k(x1). To repeat the same step, if we define (m, k) ≤ (m′, k′) if m < m′; or
m = m′ with k ≤ k′, we can find a sequence (fm,k)m,k in X∗ such that

(i) : (fm+1,k)
∞
k=1 is a subsequence of (fm,k)

∞
k=1 for m = 0, 1, .., where f0,k := fk.

(ii) : ci = limk fm,k(xi) exists for all 1 ≤ i ≤ m.

Now put hk := fk,k. Then (hk) is a subsequence of (fn). Notice that for each i, we have limk hk(xi) =
limk fi,k(xi) = ci by the construction (ii) above. Since (‖hk‖) is bounded and D is dense in X, we
have h(x) := limk hk(x) exists for all x ∈ X and h ∈ X∗. That is h = w∗-limk hk. The proof is
finished. �

Remark 7.10. Theorem 7.9 does not hold if the separability of X is removed.
For example, consider X = `∞ and δn the n-th coordinate functional on `∞. Then δn ∈ (`∞)∗

with ‖δn‖(`∞)∗ = 1 for all n. Suppose that (δn) has a w∗-convergent subsequence (δnk)∞k=1. Define
x ∈ `∞ by

x(m) =


0 if m 6= nk;

1 if m = n2k;

−1 if m = n2k+1.

Hence we have |δni(x)− δni+1(x)| = 2 for all i = 1, 2, ... It leads to a contradiction. So (δn) has no
w∗-convergent subsequence.

Corollary 7.11. Let X be a separable space. In X∗ assume that the set of all w∗-convergent
sequences coincides with the set of all normed convergent sequences, that is a sequence (fn) is
w∗-convergent if and only if it is norm convergent. Then dimX <∞.

Proof. It needs to show that the closed unit ball BX∗ in X∗ is compact in norm. Let (fn) be a
sequence in BX∗ . By using Theorem 7.9, (fn) has a w∗-convergent subsequence (fnk). Then by the
assumption, (fnk) is norm convergent. Note that if lim

k
fnk = f in norm, then f ∈ BX∗ . So BX∗ is

compact and thus dimX∗ <∞. So dimX∗∗ <∞ that gives dimX is finite because X ⊆ X∗∗. �

Corollary 7.12. Suppose that X is a separable. If X is reflexive space, then the closed unit ball
BX of X is sequentially weakly compact, i.e. it is equivalent to saying that any bounded sequence
in X has a weakly convergent subsequence.

Proof. Let Q : X → X∗∗ be the canonical map as before. Let (xn) be a bounded sequence in X.
Hence, (Qxn) is a bounded sequence in X∗∗. We first notice that since X is reflexive and separable,
X∗ is also separable by Proposition 5.7. So, we can apply Theorem 7.9, (Qxn) has a w∗-convergent
subsequence (QxnK ) in X∗∗ = Q(X) and hence, (xnk) is weakly convergent in X. �

8. Open Mapping Theorem

Let E and F be the metric spaces. Recall that a mapping f : E → F is called an open mapping
if f(U) is an open subset of F whenever U is an open subset of E.
It is clear that a continuous bijection is a homeomorphism if and only if it is an open map.

Remark 8.1. Warning An open map need not be a closed map.
For example, let p : (x, y) ∈ R2 7→ x ∈ R. Then p is an open map but it is not a closed map. In
fact, if we let A = {(x, 1/x) : x 6= 0}, then A is closed but p(A) = R \ {0} is not closed.

Lemma 8.2. Let X and Y be normed spaces and T : X → Y a linear map. Then T is open if and
only if 0 is an interior point of T (U) where U is the open unit ball of X.
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Proof. The necessary condition is obvious.
For the converse, let W be a non-empty subset of X and a ∈ W . Put b = Ta. Since W is open,
we choose r > 0 such that BX(a, r) ⊆ W . Notice that U = 1

r (BX(a, r) − a) ⊆ 1
r (W − a). So, we

have T (U) ⊆ 1
r (T (W )− b). Then by the assumption, there is δ > 0 such that BY (0, δ) ⊆ T (U) ⊆

1
r (T (W ) − b). This implies that b + rBY (0, δ) ⊆ T (W ) and so, T (a) = b is an interior point of
T (W ). �

Corollary 8.3. Let M be a closed subspace of a normed space X. Then the natural projection
π : X → X/M is an open map.

Proof. Put U and V the open unit balls of X and X/M respectively. Using Lemma 8.2, the result
is obtained by showing that V ⊆ π(U). Note that if x̄ = π(x) ∈ V , then by the definition a quotient
norm, we can find an element m ∈ M such that ‖x + m‖ < 1. Hence we have x + m ∈ U and
x̄ = π(x+m) ∈ π(U). �

Lemma 8.4. Let T : X −→ Y be a bounded linear surjection from a Banach space X onto a
Banach space Y . Then 0 is an interior point of T (U), where U is the open unit ball of X, that is,
U := {x ∈ X : ‖x‖ < 1}.

Proof. Set U(r) := {x ∈ X : ‖x‖ < r} for r > 0 and so, U = U(1).

Claim 1 : 0 is an interior point of T (U(1)).
Note that since T is surjective, Y =

⋃∞
n=1 T (U(n)). Then by the second category theorem, there

exists N such that int T (U(N)) 6= ∅. Let y′ be an interior point of T (U(N)). Then there is

η > 0 such that BY (y′, η) ⊆ T (U(N)). Since BY (y′, η) ∩ T (U(N)) 6= ∅, we may assume that
y′ ∈ T (U(N)). Let x′ ∈ U(N) such that T (x′) = y′. Then we have

0 ∈ BY (y′, η)− y′ ⊆ T (U(N))− T (x′) ⊆ T (U(2N)) = 2NT (U(1)).

So we have 0 ∈ 1
2N (BY (y′, η)− y′) ⊆ T (U(1)). Hence 0 is an interior point of T (U(1)). So Claim 1

follows.
Therefore there is r > 0 such that BY (0, r) ⊆ T (U(1)). This implies that we have

(8.1) BY (0, r/2k) ⊆ T (U(1/2k))

for all k = 0, 1, 2....
Claim 2 : D := BY (0, r) ⊆ T (U(3)).
Let y ∈ D. By Eq 8.1, there is x1 ∈ U(1) such that ‖y − T (x1)‖ < r/2. Then by using Eq 8.1
again, there is x2 ∈ U(1/2) such that ‖y− T (x1)− T (x2)‖ < r/22. To repeat the same steps, there
exists is a sequence (xk) such that xk ∈ U(1/2k−1) and

‖y − T (x1)− T (x2)− ...− T (xk)‖ < r/2k

for all k. On the other hand, since
∑∞

k=1 ‖xk‖ ≤
∑∞

k=1 1/2k−1 and X is Banach, x :=
∑∞

k=1 xk
exists in X and ‖x‖ ≤ 2. This implies that y = T (x) and ‖x‖ < 3.
Thus we the result follows. �

Theorem 8.5. Open Mapping Theorem : Retains the notation as in Lemma 8.4. Then T is
an open mapping.

Proof. The proof is finished by using Lemmas 8.2 and 8.4 at once. �

Proposition 8.6. Let T be a bounded linear isomorphism between Banach spaces X and Y . Then
T−1 must be bounded.
Consequently, if ‖ ·‖ and ‖ ·‖′ both are complete norms on X such that ‖ ·‖ ≤ c‖ ·‖′ for some c > 0,
then these two norms ‖ · ‖ and ‖ · ‖′ are equivalent.
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Proof. The first assertion follows from the Open Mapping Theorem at once.
Therefore, the last assertion can be obtained by considering the identity map I : (X, ‖·‖)→ (X, ‖·‖′)
which is bounded by the assumption. �

Corollary 8.7. Let X and Y be Banach spaces and T : X → Y a bounded linear operator. Then
the image of T is closed in Y if and only if there is c > 0 such that

d(x, kerT ) ≤ c‖Tx‖

for all x ∈ X.

Proof. Let Z be the image of T . Then the canonical map T̃ : X/kerT → Z induced by T is a

bounded linear isomorphism. Notice that T̃ (x̄) = Tx for all x ∈ X, where x̄ := x+kerT ∈ X/ kerT .
Now suppose that Z is closed. Then Z becomes a Banach space. Then the Open Mapping Theorem

implies that the inverse of T̃ is also bounded. So, there is c > 0 such that d(x, kerT ) = ‖x̄‖X/ kerT ≤
c‖T̃ (x̄)‖ = c‖T (x)‖ for all x ∈ X. So, the necessary condition follows.
For the converse, let (xn) be a sequence in X such that limTxn = y ∈ Y exists and so, (Txn) is
a Cauchy sequence in Y . Then by the assumption, (x̄n) is a Cauchy sequence in X/ kerT . Since
X/ kerT is complete, we can find an element x ∈ X such that lim x̄n = x̄ in X/ kerT . This gives

y = limT (xn) = lim T̃ (x̄n) = T̃ (x̄) = T (x). So, y ∈ Z. The proof is finished. �

9. Closed Graph Theorem

Let T : X −→ Y . The graph of T , write G(T ) is defined by the set {(x, y) ∈ X × Y : y = T (x)}.
Now the direct sum X⊕Y is endowed with the norm ‖ · ‖∞, that is ‖x⊕y‖∞ := max(‖x‖X , ‖y‖Y ).
We also write X ⊕∞ Y when X ⊕ Y is equipped with this norm.
We say that an operator T : X −→ Y is said to be closed if its graph G(T ) is a closed subset of
X ⊕∞ Y , that is, if a sequence (xn) of X satisfying the condition ‖(xn, Txn) − (x, y)‖∞ → 0 for
some x ∈ X and y ∈ Y implies T (x) = y.

Theorem 9.1. Closed Graph Theorem : Let T : X −→ Y be a linear operator from a Banach
space X to a Banach Y . Then T is bounded if and only if T is closed.

Proof. The part (⇒) is clear.
Assume that T is closed, that is, the graph G(T ) is ‖ · ‖∞-closed. Define ‖ · ‖0 : X −→ [0,∞) by

‖x‖0 = ‖x‖+ ‖T (x)‖

for x ∈ X. Then ‖ · ‖0 is a norm on X. Let I : (X, ‖ · ‖0) −→ (X, ‖ · ‖) be the identity operator. It
is clear that I is bounded since ‖ · ‖ ≤ ‖ · ‖0.
Claim: (X, ‖ · ‖0) is Banach. In fact, let (xn) be a Cauchy sequence in (X, ‖ · ‖0). Then (xn) and
(T (xn)) both are Cauchy sequences in (X, ‖ · ‖) and (Y, ‖ · ‖Y ). Since X and Y are Banach spaces,
there are x ∈ X and y ∈ Y such that ‖xn − x‖X → 0 and ‖T (xn)− y‖Y → 0. Thus y = T (x) since
the graph G(T ) is closed.
Then by Theorem 8.6, the norms ‖ · ‖ and ‖ · ‖0 are equivalent. So, there is c > 0 such that
‖T (·)‖ ≤ ‖ · ‖0 ≤ c‖ · ‖ and hence, T is bounded since ‖T (·)‖ ≤ ‖ · ‖0. The proof is finished. �

Example 9.2. Let D := {c = (cn) ∈ `2 :
∑∞

n=1 n
2|cn|2 < ∞}. Define T : D −→ `2 by T (c) =

(ncn). Then T is an unbounded closed operator.

Proof. Note that since ‖Ten‖ = n for all n, T is not bounded. Now we claim that T is closed.
Let (xi) be a convergent sequence in D such that (Txi) is also convergent in `2. Write xi = (xi,n)∞n=1

with lim
i

xi = x := (xn) in D and lim
i
Txi = y := (yn) in `2. This implies that if we fix n0, then
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lim
i
xi,n0 = xn0 and lim

i
n0xi,n0 = yn0 . This gives n0xn0 = yn0 . Thus Tx = y and hence T is

closed. �

Example 9.3. Let X := {f ∈ Cb(0, 1) ∩ C∞(0, 1) : f ′ ∈ Cb(0, 1)}. Define T : f ∈ X 7→ f ′ ∈
Cb(0, 1). Suppose that X and Cb(0, 1) both are equipped with the sup-norm. Then T is a closed
unbounded operator.

Proof. Note that if a sequence fn → f in X and f ′n → g in Cb(0, 1). Then f ′ = g. Hence T is
closed. In fact, if we fix some 0 < c < 1, then by the Fundamental Theorem of Calculus, we have

0 = lim
n

(fn(x)− f(x)) = lim
n

(

∫ x

c
(f ′n(t)− f ′(t))dt) =

∫ x

c
(g(t)− f ′(t))dt

for all x ∈ (0, 1). This implies that we have
∫ x
c g(t)dt =

∫ x
c f
′(t)dt. So g = f ′ on (0, 1).

On the other hand, since ‖Txn‖∞ = n for all n ∈ N. Thus T is unbounded as desired. �

10. Uniform Boundedness Theorem

Theorem 10.1. Uniform Boundedness Theorem : Let {Ti : X −→ Y : i ∈ I} be a family of
bounded linear operators from a Banach space X into a normed space Y . Suppose that for each
x ∈ X, we have sup

i∈I
‖Ti(x)‖ <∞. Then sup

i∈I
‖Ti‖ <∞.

Proof. For each x ∈ X, define

‖x‖0 := max(‖x‖, sup
i∈I
‖Ti(x)‖).

Then ‖ · ‖0 is a norm on X and ‖ · ‖ ≤ ‖ · ‖0 on X. If (X, ‖ · ‖0) is complete, then by the Open
Mapping Theorem. This implies that ‖ · ‖ is equivalent to ‖ · ‖0 and thus there is c > 0 such that

‖Tj(x)‖ ≤ sup
i∈I
‖Ti(x)‖ ≤ ‖x‖0 ≤ c‖x‖

for all x ∈ X and for all j ∈ I. So ‖Tj‖ ≤ c for all j ∈ I is as desired.
Thus it remains to show that (X, ‖ · ‖0) is complete. In fact, if (xn) is a Cauchy sequence in
(X, ‖ ·‖0), then it is also a Cauchy sequence with respect to the norm ‖ ·‖ on X. Write x := limn xn
with respect to the norm ‖ · ‖. Also for any ε > 0, there is N ∈ N such that ‖Ti(xn − xm)‖ < ε
for all m,n ≥ N and for all i ∈ I. Now fixing i ∈ I and n ≥ N and taking m → ∞, we have
‖Ti(xn − x)‖ ≤ ε and thus supi∈I ‖Ti(xn − x)‖ ≤ ε for all n ≥ N . So we have ‖xn − x‖0 → 0 and
hence (X, ‖ · ‖0) is complete. The proof is finished. �

Remark 10.2. Consider c00 := {x = (xn) : ∃ N, ∀ n ≥ N ;xn ≡ 0} which is endowed with ‖ · ‖∞.
Now for each k ∈ N, if we define Tk ∈ c∗00 by Tk((xn)) := kxk, then supk |Tk(x)| < ∞ for each
x ∈ c00 but (‖Tk‖) is not bounded, in fact, ‖Tk‖ = k. Thus the assumption of the completeness of
X in Theorem 10.1 is essential.

Corollary 10.3. Let X and Y be as in Theorem 10.1. Let Tk : X −→ Y be a sequence of bounded
operators. Assume that limk Tk(x) exists in Y for all x ∈ X. Then there is T ∈ B(X,Y ) such that
limk ‖(T − Tk)x‖ = 0 for all x ∈ X. Moreover, we have ‖T‖ ≤ lim inf

k
‖Tk‖.

Proof. Notice that by the assumption, we can define a linear operator T from X to Y given by
Tx := limk Tkx for x ∈ X. It needs to show that T is bounded. In fact, (‖Tk‖) is bounded by the
Uniform Boundedness Theorem since limk Tkx exists for all x ∈ X. So for each x ∈ BX , there is a
positive integer K such that ‖Tx‖ ≤ ‖TKx‖+ 1 ≤ (supk ‖Tk‖) + 1. Thus, T is bounded.
Finally, it remains to show the last assertion. In fact, notice that for any x ∈ BX and ε > 0,
there is N(x) ∈ N such that ‖Tx‖ < ‖Tkx‖ + ε < ‖Tk‖ + ε for all k ≥ N(x). This gives ‖Tx‖ ≤
infk≥N(x) ‖Tk‖ + ε for all k ≥ N(x) and hence, ‖Tx‖ ≤ infk≥N(x) ‖Tk‖ + ε ≤ supn infk≥n ‖Tk‖ + ε
for all x ∈ BX and ε > 0. So, we have ‖T‖ ≤ lim inf

k
‖Tk‖ as desired. �
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Corollary 10.4. Every weakly convergent sequence in a normed space must be bounded.

Proof. Let (xn) be a weakly convergent sequence in a normed space X. If we let Q : X → X∗∗

be the canonical isometry, then (Qxn) is a bounded sequence in X∗∗. Notice that (xn) is weakly
convergent if and only if (Qxn) is w∗-convergent. So, (Qxn(x∗)) is bounded for all x∗ ∈ X∗. Notice
that the dual space X∗ must be complete. So, we can apply the Uniform Boundedness Theorem
to see that (Qxn) is bounded and so is (xn). �
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11. Geometry of Hilbert space I

From now on, all vectors spaces are over the complex field. Recall that an inner product on a
vector space V is a function (·, ·) : V × V → C which satisfies the following conditions.

(i) (x, x) ≥ 0 for all x ∈ V and (x, x) = 0 if and only if x = 0.

(ii) (x, y) = (y, x) for all x, y ∈ V .
(iii) (αx+ βy, z) = α(x, z) + β(y, z) for all x, y, z ∈ V and α, β ∈ C.

Consequently, for each x ∈ V , the map y ∈ V 7→ (x, y) ∈ C is conjugate linear by the conditions
(ii) and (iii), that is (x, αy + βz) = ᾱ(x, y) + β̄(x, z) for all y, z ∈ V and α, β ∈ C.
Also, the inner product (·, ·) will give a norm on V which is defined by

‖x‖ :=
√

(x, x)

for x ∈ V .

We first recall the following useful properties of an inner product space which can be found in the
standard text books of linear algebras.

Proposition 11.1. Let V be an inner product space. For all x, y ∈ V , we always have:

(i): (Cauchy-Schwarz inequality): |(x, y)| ≤ ‖x‖‖y‖ Consequently, the inner product on
V × V is jointly continuous.

(ii): (Parallelogram law): ‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2

Furthermore, a norm ‖ · ‖ on a vector space X is induced by an inner product if and only if it
satisfies the Parallelogram law. In this case such inner product is given by the following:

Re(x, y) =
1

4
(‖x+ y‖2 − ‖x− y‖2) and Im(x, y) =

1

4
(‖x+ iy‖2 − ‖x− iy‖2)

for all x, y ∈ X.

Example 11.2. It follows from Proposition 11.1 immediately that `2 is a Hilbert space and `p is
not for all p ∈ [1,∞] \ {2}.

From now on, all vector spaces are assumed to be a complex inner product spaces. Recall that
two vectors x and y in an inner product space V are said to be orthogonal if (x, y) = 0.

Proposition 11.3. (Bessel′s inequality) : Let {e1, ..., eN} be an orthonormal set in an inner
product space V , that is (ei, ej) = 1 if i = j, otherwise is equal to 0. Then for any x ∈ V , we have

N∑
i=1

|(x, ei)|2 ≤ ‖x‖2.

Proof. It can be obtained by the following equality immediately

‖x−
N∑
i=1

(x, ei)ei‖2 = ‖x‖2 −
N∑
i=1

|(x, ei)|2.

�

Corollary 11.4. Let (ei)i∈I be an orthonormal set in an inner product space V . Then for any
element x ∈ V , the set

{i ∈ I : (ei, x) 6= 0}
is countable.
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Proof. Note that for each x ∈ V , we have

{i ∈ I : (ei, x) 6= 0} =

∞⋃
n=1

{i ∈ I : |(ei, x)| ≥ 1/n}.

Then the Bessel’s inequality implies that the set {i ∈ I : |(ei, x)| ≥ 1/n} must be finite for each
n ≥ 1. So the result follows. �

The following is one of the most important classes in mathematics.

Definition 11.5. A Hilbert space is a Banach space whose norm is given by an inner product.

In the rest of this section, X always denotes a complex Hilbert space with an inner product (·, ·).

Proposition 11.6. Let (en) be a sequence of orthonormal vectors in a Hilbert space X. Then for
any x ∈ V , the series

∑∞
n=1(x, en)en is convergent.

Moreover, if (eσ(n)) is a rearrangement of (en), that is, σ : {1, 2...} −→ {1, 2, ..} is a bijection.
Then we have

∞∑
n=1

(x, en)en =

∞∑
n=1

(x, eσ(n))eσ(n).

Proof. Since X is a Hilbert space, the convergence of the series
∑∞

n=1(x, en)en follows from the
Bessel’s inequality at once. In fact, if we put sp :=

∑p
n=1(x, en)en, then we have

‖sp+k − sp‖2 =
∑

p+1≤n≤p+k
|(x, en)|2.

Now put y =
∑∞

n=1(x, en)en and z =
∑∞

n=1(x, eσ(n))eσ(n). Notice that we have

(y, y − z) = lim
N

(
N∑
n=1

(x, en)en,
N∑
n=1

(x, en)en − z)

= lim
N

N∑
n=1

|(x, en)|2 − lim
N

N∑
n=1

(x, en)

∞∑
j=1

(x, eσ(j))(en, eσ(j))

=
∞∑
n=1

|(x, en)|2 − lim
N

N∑
n=1

(x, en)(x, en) (N.B: for each n, there is a unique j such that n = σ(j))

= 0.

Similarly, we have (z, y − z) = 0. The result follows. �

A family of an orthonormal vectors, say B, in X is said to be complete if it is maximal with
respect to the set inclusion order,that is, if C is another family of orthonormal vectors with B ⊆ C,
then B = C.
A complete orthonormal subset of X is also called an orthonormal base of X.

Proposition 11.7. Let {ei}i∈I be a family of orthonormal vectors in X. Then the followings are
equivalent:

(i): {ei}i∈I is complete;
(ii): if (x, ei) = 0 for all i ∈ I, then x = 0;

(iii): for any x ∈ X, we have x =
∑

i∈I(x, ei)ei;
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(iv): for any x ∈ X, we have ‖x‖2 =
∑

i∈I |(x, ei)|2.

In this case, the expression of each element x ∈ X in Part (iii) is unique.

Note : there are only countable many (x, ei) 6= 0 by Corollary 11.4, so the sums in (iii) and (iv)
are convergent by Proposition 11.6.

Proposition 11.8. Let X be a Hilbert space. Then

(i) : X processes an orthonormal base.
(ii) : If {ei}i∈I and {fj}j∈J both are the orthonormal bases for X, then I and J have the same

cardinality. In this case, the cardinality |I| of I is called the orthonormal dimension of X.

Proof. Part (i) follows from Zorn’s Lemma at once.
For part (ii), if the cardinality |I| is finite, then the assertion is clear since |I| = dimX (vector
space dimension) in this case.
Now assume that |I| is infinite, for each ei, put Jei := {j ∈ J : (ei, fj) 6= 0}. Note that since {ei}i∈I
is maximal, Proposition 11.7 implies that we have

{fj}j∈J ⊆
⋃
i∈I

Jei .

Notice that Jei is countable for each ei by using Proposition 11.4. On the other hand, we have
|N| ≤ |I| because |I| is infinite and thus |N× I| = |I|. Then we have

|J | ≤
∑
i∈I
|Jei | =

∑
i∈I
|N| = |N× I| = |I|.

From symmetry argument, we also have |I| ≤ |J |. �

Remark 11.9. Recall that a vector space dimension of X is defined by the cardinality of a maximal
linearly independent set in X.
Notice that if X is finite dimensional, then the orthonormal dimension is the same as the vector
space dimension.
Also, the vector space dimension is larger than the orthornormal dimension in general since every
orthogonal set must be linearly independent.

We say that two Hilbert spaces X and Y are said to be isomorphic if there is linear isomorphism
U from X onto Y such that (Ux,Ux′) = (x, x′) for all x, x′ ∈ X. In this case U is called a unitary
operator.

Theorem 11.10. Two Hilbert spaces are isomorphic if and only if they have the same orthonornmal
dimension.

Proof. The converse part (⇐) is clear.
Now for the (⇒) part, let X and Y be isomorphic Hilbert spaces. Let U : X −→ Y be a unitary.
Note that if {ei}i∈I is an orthonormal base of X, then {Uei}i∈I is also an orthonormal base of Y .
Thus the necessary part follows from Proposition 11.8 at once. �

Corollary 11.11. Every separable Hilbert space is isomorphic to `2 or Cn for some n.

Proof. Let X be a separable Hilbert space.
If dimX <∞, then it is clear that X is isomorphic to Cn for n = dimX.
Now suppose that dimX =∞ and its orthonormal dimension is larger than |N|, that is X has an
orthonormal base {fi}i∈I with |I| > |N|. Note that since ‖fi − fj‖ =

√
2 for all i, j ∈ I with i 6= j.

This implies that B(ei, 1/4) ∩B(ej , 1/4) = ∅ for i 6= j.
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On the other hand, if we let D be a countable dense subset of X, then B(fi, 1/4) ∩D 6= ∅ for all
i ∈ I. So for each i ∈ I, we can pick up an element xi ∈ D ∩B(fi, 1/4). Therefore, one can define
an injection from I into D. It is absurd to the countability of D. �

12. Geometry of Hilbert space II

In this section, let X always denote a complex Hilbert space.

Proposition 12.1. If D is a closed convex subset of X, then there is a unique element z ∈ D such
that

‖z‖ = inf{‖x‖ : x ∈ D}.
Consequently, for any element u ∈ X, there is a unique element w ∈ D such that

‖u− w‖ = d(u,D) := inf{‖u− x‖ : x ∈ D}.

Proof. We first claim the existence of such z.
Let d := inf{‖x‖ : x ∈ D}. Then there is a sequence (xn) in D such that ‖xn‖ → d. Notice that
(xn) is a Cauchy sequence. In fact, the Parallelogram Law implies that

‖xm − xn
2

‖2 =
1

2
‖xm‖2 +

1

2
‖xn‖2 − ‖

xm + xn
2

‖2 ≤ 1

2
‖xm‖2 +

1

2
‖xn‖2 − d2 −→ 0

as m,n→∞, where the last inequality holds because D is convex and hence 1
2(xm + xn) ∈ D. Let

z := limn xn. Then ‖z‖ = d and z ∈ D because D is closed.
For the uniqueness, let z, z′ ∈ D such that ‖z‖ = ‖z′‖ = d. Thanks to the Parallelogram Law
again, we have

‖z − z
′

2
‖2 =

1

2
‖z‖2 +

1

2
‖z′‖2 − ‖z + z′

2
‖2 ≤ 1

2
‖z‖2 +

1

2
‖z′‖2 − d2 = 0.

Therefore z = z′.
The last assertion follows by considering the closed convex set u−D := {u−x : x ∈ D} immediately.

�

Proposition 12.2. Suppose that M is a closed subspace. Let u ∈ X and w ∈ M . Then the
followings are equivalent:

(i): ‖u− w‖ = d(u,M);
(ii): u− w ⊥M , that is (u− w, x) = 0 for all x ∈M .

Consequently, for each element u ∈ X, there is a unique element w ∈M such that u− w ⊥M .

Proof. Let d := d(u,M).
For proving (i)⇒ (ii), fix an element x ∈M . Then for any t > 0, note that since w + tx ∈M , we
have

d2 ≤ ‖u− w − tx‖2 = ‖u− w‖2 + ‖tx‖2 − 2Re(u− w, tx) = d2 + ‖tx‖2 − 2Re(u− w, tx).

This implies that

(12.1) 2Re(u− w, x) ≤ t‖x‖2

for all t > 0 and for all x ∈M . So by considering −x in Eq.12.1, we obtain

2|Re(u− w, x)| ≤ t‖x‖2.
for all t > 0. This implies that Re(u−w, x) = 0 for all x ∈M . Similarly, putting ±ix into Eq.12.1,
we have Im(u− w, x) = 0. So (ii) follows.
For (ii)⇒ (i), we need to show that ‖u−w‖2 ≤ ‖u−x‖2 for all x ∈M . Note that since u−w ⊥M
and w ∈M , we have u− w ⊥ w − x for all x ∈M . This gives

‖u− x‖2 = ‖(u− w) + (w − x)‖2 = ‖u− w‖2 + ‖w − x‖2 ≥ ‖u− w‖2.
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Part (i) follows.
The last statement is obtained by Proposition 12.1 immediately. �

Theorem 12.3. Let M be a closed subspace. Put

M⊥ := {x ∈ X : x ⊥M}.
Then M⊥ is a closed subspace and we have X = M ⊕M⊥.
In this case, M⊥ is called the orthogonal complement of M .

Proof. It is clear that M⊥ is a closed subspace and M∩M⊥ = (0). It remains to show X = M+M⊥.
Let u ∈ X. Then by Proposition 12.2, we can find an element w ∈M such that u−w ⊥M . Thus
u− w ∈M⊥ and u = w + (u− w). The proof is finished. �

Corollary 12.4. With the notation as above, an element x0 /∈M if and only if there is an element
m ∈M such that x0 −m ⊥M .

Proof. It is clear from Theorem 12.3. �

Corollary 12.5. If M is a closed subspace of X, then M⊥⊥ = M .

Proof. It is clear that M ⊆ M⊥⊥ by the definition of M⊥⊥. Now if there is x ∈ M⊥⊥ \M , then
by the decomposition X = M ⊕M⊥ obtained in Theorem12.3, we have x = y + z for some y ∈M
and z ∈ M⊥. This implies that z = x− y ∈ M⊥ ∩M⊥⊥ = (0). This gives x = y ∈ M . It leads to
a contradiction. �

Remark 12.6. It is worthwhile pointing out that for a general Banach space X and a closed
subspace M of X, it May Not have a complementary Closed subspace N of M , that is X = M⊕N .
If M has a complementary closed subspace X, we say that M is complemented in X.

Example 12.7. If M is a finite dimensional subspace of a normed space X, then M is comple-
mented in X.
In fact, if M is spanned by {ei : i = 1, 2..,m}, then M is closed and by the Hahn-Banach Theorem,
for each i = 1, ...,m, there is e∗i ∈ X∗ such that e∗i (ej) = 1 if i = j, otherwise, it is equal to 0. Put
N :=

⋂m
i=1 ker e∗i . Then X = M ⊕N .

Example 12.8. (Very Not Obvious !!!) c0 is not complemented in `∞.

Theorem 12.9. Riesz Representation Theorem : For each f ∈ X∗, then there is a unique
element vf ∈ X such that

f(x) = (x, vf )

for all x ∈ X and we have ‖f‖ = ‖vf‖.
Furthermore, if (ei)i∈I is an orthonormal base of X, then vf =

∑
i f(ei)ei.

Proof. We first prove the uniqueness of vf . If z ∈ X also satisfies the condition: f(x) = (x, z) for
all x ∈ X. This implies that (x, z − vf ) = 0 for all x ∈ X. So z − vf = 0.
Now for proving the existence of vf , it suffices to show the case ‖f‖ = 1. Then ker f is a closed
proper subspace. Then by the orthogonal decomposition again, we have

X = ker f ⊕ (ker f)⊥.

Since f 6= 0, we have (ker f)⊥ is linear isomorphic to C. Also note that the restriction of f
on (ker f)⊥ is of norm one. Hence there is an element vf ∈ (ker f)⊥ with ‖vf‖ = 1 such that

f(vf ) = ‖f |(ker f)⊥‖ = 1 and (ker f)⊥ = Cvf . So for each element x ∈ X, we have x = z + αvf for
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some z ∈ ker f and α ∈ C. Then f(x) = αf(vf ) = α = (x, vf ) for all x ∈ X.

Concerning about the last assertion, if we put vf =
∑
i∈I

αiei, then f(ej) = (ej , vf ) = αj for all

j ∈ I. The proof is finished. �

Corollary 12.10. With the notation as in Theorem 12.9, Define the map

(12.2) Φ : f ∈ X∗ 7→ vf ∈ X, i.e., f(y) = (x,Φ(f))

for all y ∈ X and f ∈ X∗.
And if we define (f, g)X∗ := (vg, vf )X for f, g ∈ X∗. Then (X∗, (·, ·)X∗) becomes a Hilbert space.
Moreover, Φ is an anti-unitary operator from X∗ onto X, that is Φ satisfies the conditions:

Φ(αf + βg) = αΦ(f) + βΦ(g) and (Φf,Φg)X = (g, f)X∗

for all f, g ∈ X∗ and α, β ∈ C.
Furthermore, if we define J : x ∈ X 7→ fx ∈ X∗, where fx(y) := (y, x), then J is the inverse of Φ,
and hence, J is an isometric conjugate linear isomorphism.

Proof. The result follows immediately from the observation that vf+g = vf + vg and vαf = αvf for
all f ∈ X∗ and α ∈ C.
The last assertion is clearly obtained by the Eq.12.2 above. �

Corollary 12.11. Every Hilbert space is reflexive.

Proof. Using the notation as in the Riesz Representation Theorem 12.9, let X be a Hilbert space.
and Q : X → X∗∗ the canonical isometry. Let ψ ∈ X∗∗. To apply the Riesz Theorem on the dual
space X∗, there exists an element x∗0 ∈ X∗ such that

ψ(f) = (f, x∗0)X∗

for all f ∈ X∗. By using Corollary 12.10, there is an element x0 ∈ X such that x0 = vx∗0 and thus,
we have

ψ(f) = (f, x∗0)X∗ = (x0, vf )X = f(x0)

for all f ∈ X∗. Therefore, ψ = Q(x0) and so, X is reflexive.
The proof is finished. �

Theorem 12.12. Every bounded sequence in a Hilbert space has a weakly convergent subsequence.

Proof. Let (xn) be a bounded sequence in a Hilbert space X and M be the closed subspace of X
spanned by {xm : m = 1, 2...}. Then M is a separable Hilbert space.
Method I : Define a map by jM : x ∈ M 7→ jM (x) := (·, x) ∈ M∗. Then (jM (xn)) is a bounded
sequence in M∗. By Banach’s result, Proposition 7.9, (jM (xn)) has a w∗-convergent subsequence

(jM (xnk)). Put jM (xnk)
w∗−−→ f ∈ M∗, that is jM (xnk)(z) → f(z) for all z ∈ M . The Riesz

Representation will assure that there is a unique element m ∈ M such that jM (m) = f . So we
have (z, xnk) → (z,m) for all z ∈ M . In particular, if we consider the orthogonal decomposition
X = M ⊕M⊥, then (x, xnk)→ (x,m) for all x ∈ X and thus (xnk , x)→ (m,x) for all x ∈ X. Then
xnk → m weakly in X by using the Riesz Representation Theorem again.
Method II : We first note that since M is a separable Hilbert space, the second dual M∗∗ is also
separable by the reflexivity of M . So the dual space M∗ is also separable (see Proposition5.7). Let
Q : M −→ M∗∗ be the natural canonical mapping. To apply the Banach’s result Proposition 7.9
for X∗, then Q(xn) has a w∗-convergent subsequence, says Q(xnk). This gives an element m ∈ M
such that Q(m) = w∗-limkQ(xnk) because M is reflexive. So we have f(xnk) = Q(xnk)(f) →
Q(m)(f) = f(m) for all f ∈ M∗. Using the same argument as in Method I again, xnk weakly
converges to m as desired. �
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Remark 12.13. It is well known that we have the following Theorem due to R. C. James (the
proof is highly non-trivial):

A normed space X is reflexive if and only if every bounded sequence in X has a weakly convergent
subsequence.

Theorem 12.12 can be obtained by the James’s Theorem directly. However, Theorem 12.12 gives a
simple proof in the Hilbert spaces case.

13. Operators on a Hilbert space

Throughout this section, all spaces are complex Hilbert spaces. Let B(X,Y ) denote the space
of all bounded linear operators from X into Y . If X = Y , write B(X) for B(X,X).
Let T ∈ B(X,Y ). We will make use the following simple observation:

(13.1) (Tx, y) = 0 for all x ∈ X; y ∈ Y if and only if T = 0.

Therefore, the elements in B(X,Y ) are uniquely determined by the Eq.13.1, that is, T = S in
B(X,Y ) if and only if (Tx, y) = (Sx, y) for all x ∈ X and y ∈ Y .

Remark 13.1. For Hilbert spaces H1 and H2, we consider their direct sum H := H1 ⊕H2. If we
define the inner product on H by

(x1 ⊕ x2, y1 ⊕ y2) := (x1, y1)H1 + (x2, y2)H2

for x1 ⊕ x2 and y1 ⊕ y2 in H, then H becomes a Hilbert space. Now for each T ∈ B(H1, H2), we

can define an element T̃ ∈ B(H) by T̃ (x1⊕ x2) := 0⊕Tx1. So, the space B(H1, H2) can be viewed
as a closed subspace of B(H). Thus, we can consider the case of H1 = H2 for studying the space
B(H1, H2).

Proposition 13.2. Let T ∈ B(X). Then we have

(i): T = 0 if and only if (Tx, x) = 0 for all x ∈ X. Consequently, for T, S ∈ B(X), T = S if
and only if (Tx, x) = (Sx, x) for all x ∈ X.

(ii): ‖T‖ = sup{|(Tx, y)| : x, y ∈ X with ‖x‖ = ‖y‖ = 1}.

Proof. It is clear that the necessary part in Part (i). Now we are going to the sufficient part in
Part (i), that is we assume that (Tx, x) = 0 for all x ∈ X. This implies that we have

0 = (T (x+ iy), x+ iy) = (Tx, x) + i(Ty, x)− i(Tx, y) + (Tiy, iy) = i(Ty, x)− i(Tx, y).

So we have (Ty, x)−(Tx, y) = 0 for all x, y ∈ X. In particular, if we replace y by iy in the equation,
then we get i(Ty, x) − i(Tx, y) = 0 and hence we have (Ty, x) + (Tx, y) = 0. Therefore we have
(Tx, y) = 0.
For part (ii) : Let α = sup{|(Tx, y)| : x, y ∈ X with ‖x‖ = ‖y‖ = 1}. It is clear that we have
‖T‖ ≥ α. It needs to show ‖T‖ ≤ α.
In fact, for each x ∈ X with ‖x‖ = 1, then by the Hahn-Banach Theorem, there is f ∈ X∗ with
‖f‖ = 1 such that f(Tx) = ‖Tx‖. The Riesz Representation Theorem, we can find an element
yf ∈ X with ‖yf‖ = ‖f‖ = 1 so that we have ‖Tx‖ = f(Tx) = (x, yf ) ≤ α for all x ∈ X with
‖x‖ = 1. This implies that ‖T‖ ≤ α. The proof is finished. �

Proposition 13.3. Let T ∈ B(X). Then there is a unique element T ∗ in B(X) such that

(13.2) (Tx, y) = (x, T ∗y)

In this case, T ∗ is called the adjoint operator of T .
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Proof. We first show the uniqueness. Suppose that there are S1, S2 in B(X) which satisfy the
Eq.13.2. Then (x, S1y) = (x, S2y) for all x, y ∈ X. Eq.13.1 implies that S1 = S2.
Finally, we prove the existence. Note that if we fix an element y ∈ X, define the map fy(x) :=
(Tx, y) for all x ∈ X. Then fy ∈ X∗. The Riesz Representation Theorem implies that there is a
unique element y∗ ∈ X such that (Tx, y) = (x, y∗) for all x ∈ X and ‖fy‖ = ‖y∗‖. On the other
hand, we have

|fy(x)| = |(Tx, y)| ≤ ‖T‖‖x‖‖y‖
for all x, y ∈ X and thus ‖fy‖ ≤ ‖T‖‖y‖. If we put T ∗(y) := y∗, then T ∗ satisfies the Eq.13.2.
Also, we have ‖T ∗y‖ = ‖y∗‖ = ‖fy‖ ≤ ‖T‖‖y‖ for all y ∈ X. So T ∗ ∈ B(X) with ‖T ∗‖ ≤ ‖T‖
indeed. Hence T ∗ is as desired. �

Remark 13.4. Let S, T : X → X be linear operators (without assuming to be bounded). If they
satisfy the Eq.13.2 above, i.e.,

(Tx, y) = (x, Sy)

for all x, y ∈ X. Using the Closed Graph Theorem, one can show that S and T both are automat-
ically bounded.
In fact, let (xn) be a sequence in X such that limxn = x and limSxn = y for some x, y ∈ X. Now
for any z ∈ X, we have

(z, Sx) = (Tz, x) = lim(Tz, xn) = lim(z, Sxn) = (z, y).

Thus Sx = y and hence S is bounded by the Closed Graph Theorem.
Similarly, we can also see that T is bounded.

Remark 13.5. Let T ∈ B(X). Let T t : X∗ → X∗ be the transpose of T which is defined by
T t(f) := f ◦ T ∈ X∗ for f ∈ X∗ (see Proposition 5.9). Then we have the following commutative
diagram (Check!)

X
T ∗−−−−→ X

JX

y yJX
X∗

T t−−−−→ X∗

where JX : X → X∗ is the anti-unitary given by the Riesz Representation Theorem (see Corollary
12.10).

Proposition 13.6. Let T, S ∈ B(X). Then we have

(i): T ∗ ∈ B(X) and ‖T ∗‖ = ‖T‖.
(ii): The map T ∈ B(X) 7→ T ∗ ∈ B(X) is an isometric conjugate anti-isomorphism, that is,

(αT + βS)∗ = αT ∗ + βS∗ for all α, β ∈ C; and (TS)∗ = S∗T ∗.

(iii): ‖T ∗T‖ = ‖T‖2.

Proof. For Part (i), in the proof of Proposition 13.3, we have shown that ‖T ∗‖ ≤ ‖T‖. And the
reverse inequality clearly follows from T ∗∗ = T .
The Part (ii) follows from the adjoint operators are uniquely determined by the Eq.13.2 above.
For Part (iii), we always have ‖T ∗T‖ ≤ ‖T ∗‖‖T‖ = ‖T‖2. For the reverse inequality, let x ∈ BX .
Then

‖Tx‖2 = (Tx, Tx) = (T ∗Tx, x) ≤ ‖T ∗Tx‖‖x‖ ≤ ‖T ∗T‖.
Therefore, we have ‖T‖2 ≤ ‖T ∗T‖. �
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Example 13.7. If X = Cn and D = (aij)n×n an n×n matrix, then D∗ = (aji)n×n. In fact, notice
that

aji = (Dei, ej) = (ei, D
∗ej) = (D∗ej , ei).

So if we put D∗ = (dij)n×n, then dij = (D∗ej , ei) = aji.

Example 13.8. Let `2(N) := {x : N→ C :
∑∞

i=0 |x(i)|2 <∞}. And put (x, y) :=
∞∑
i=0

x(i)y(i).

Define the operator D ∈ B(`2(N)) (called the unilateral shift) by

Dx(i) = x(i− 1)

for i ∈ N and where we set x(−1) := 0, that is D(x(0), x(1), ...) = (0, x(0), x(1), ....).
Then D is an isometry and the adjoint operator D∗ is given by

D∗x(i) := x(i+ 1)

for i = 0, 1, .., that is D∗(x(0), x(1), ...) = (x(1), x(2), ....).
Indeed one can directly check that

(Dx, y) =
∞∑
i=0

x(i− 1)y(i) =
∞∑
j=0

x(j)y(j + 1) = (x,D∗y).

Note that D∗ is NOT an isometry.

Example 13.9. Let `∞(N) = {x : N → C : supi≥0 |x(i)| < ∞} and ‖x‖∞ := supi≥0 |x(i)|. For

each x ∈ `∞, define Mx ∈ B(`2(N)) by

Mx(ξ) := x · ξ
for ξ ∈ `2(N), where (x · ξ)(i) := x(i)ξ(i); i ∈ N.

Then ‖Mx‖ = ‖x‖∞ and M∗x = Mx, where x(i) := x(i).

Definition 13.10. Let T ∈ B(X) and let I be the identity operator on X. T is said to be

(i) : selfadjoint if T ∗ = T ;
(ii) : normal if T ∗T = TT ∗;

(iii) : unitary if T ∗T = TT ∗ = I.

Proposition 13.11. We have

(i) : Let T : X −→ X be a linear operator. T is selfadjoint if and only if

(13.3) (Tx, y) = (x, Ty) for all x, y ∈ X.
(ii) : T is normal if and only if ‖Tx‖ = ‖T ∗x‖ for all x ∈ X.

Proof. The necessary part of Part (i) is clear.
Now suppose that the Eq.13.3 holds, it needs to show that T is bounded. Indeed, it follows from
Remark13.4 at once.
For Part (ii), note that by Proposition 13.2, T is normal if and only if (T ∗Tx, x) = (TT ∗x, x). So,
Part (ii) follows from that

‖Tx‖2 = (Tx, Tx) = (T ∗Tx, x) = (TT ∗x, x) = (T ∗x, T ∗x) = ‖T ∗x‖2

for all x ∈ X. �

Proposition 13.12. Let T ∈ B(H). We have the following assertions.

(i) : T is selfadjoint if and only if (Tx, x) ∈ R for all x ∈ H.
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(ii) : If T is selfadjoint, then ‖T‖ = sup{|(Tx, x)| : x ∈ H with ‖x‖ = 1}.

Proof. Part (i) is clearly follows from Proposition13.2.
For Part (ii), if we let a = sup{|(Tx, x)| : x ∈ H with ‖x‖ = 1}, then it is clear that a ≤ ‖T‖. We
are now going to show the reverse inequality. Since T is selfadjoint, one can directly check that

(T (x+ y), x+ y)− (T (x− y), x− y) = 4Re(Tx, y)

for all x, y ∈ H. Thus if x, y ∈ H with ‖x‖ = ‖y‖ = 1 and (Tx, y) ∈ R, then by using the
Parallelogram Law, we have

(13.4) |(Tx, y)| ≤ a

4
(‖x+ y‖2 + ‖x− y‖2) =

a

2
(‖x‖2 + ‖y‖2) = a.

Now for x, y ∈ H with ‖x‖ = ‖y‖ = 1, by considering the polar form of (Tx, y) = reiθ, the Eq.13.4
gives

|(Tx, y)| = |(Tx, eiθy)| ≤ a.
Since ‖T‖ = sup

‖x‖=‖y‖=1
|(Tx, y)|, we have ‖T‖ ≤ a as desired. The proof is finished. �

Proposition 13.13. Let T ∈ B(X). Then we have

kerT = (imT ∗)⊥ and (kerT )⊥ = imT ∗

where imT denotes the image of T .

Proof. The first equality is clearly follows from x ∈ kerT if and only if 0 = (Tx, z) = (x, T ∗z) for
all z ∈ X.
On the other hand, it is clear that we have M⊥ = M

⊥
for any subspace M of X. This together

with the first equality and Corollary12.5 will yield the second equality at once. �

Proposition 13.14. Let (E, ‖ · ‖) be a Banach space. Let M and N be the closed subspaces of E
such that

E = M ⊕N . . . . . . . . . . . . (∗)
Define an operator Q : E −→ E by Q(y + z) = y for y ∈ M and z ∈ N . Then Q is bounded. In
this case, Q is called the projection with respect to the decomposition (∗).
Furthermore, if E is a Hilbert space, then N = M⊥ (and hence (∗) is the orthogonal decomposition
of E with respect to M) if and only if Q satisfies the conditions: Q2 = Q and Q∗ = Q. And Q is
called the orthogonal projection (or projection for simply) with respect to M .

Proof. For showing the boundedness of Q, by using the Closed Graph Theorem, we need to show
that if (xn) is a sequence in E such that limxn = x and limQxn = u for some x, u ∈ E, then
Qx = u.
Indeed, if we let xn = yn ⊕ zn and u = v ⊕ w, where yn, v ∈ M and zn, w ∈ N , then Qxn = yn.
Notice that (zn) is a convergent sequence in E because zn = xn − yn and (xn) and (yn) both are
convergent. Let w = lim zn. This implies that

x = limxn = lim(yn ⊕ zn) = u⊕ w.
Since M and N are closed, we have u ∈M and z ∈ N . Therefore, we have Qx = u as desired.

For the last assertion, we further assume that E is a Hilbert space.
It is clear from the definition of Q that Q(y) = y and Q(z) = 0 for all y ∈M and z ∈ N . Thus we
have Q2 = Q.
Now if N = M⊥, then for y, y′ ∈M and z, z′ ∈ N , we have

(Q(y + z), y′ + z′) = (y, y′) = (y + z,Q(y′ + z′)).
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So Q∗ = Q.
The converse of the last statement follows from Proposition 13.13 at once because kerQ = N and
imQ = M .
The proof is complete. �

Proposition 13.15. When X is a Hilbert space, we put M the set of all closed subspaces of X and
P the set of all orthogonal projections on X. Now for each M ∈ M, let PM be the corresponding
projection with respect to the orthogonal decomposition X = M ⊕M⊥. Then there is an one-one
correspondence between M and P which is defined by

M ∈M 7→ PM ∈ P.

Furthermore, if M,N ∈M, then we have

(i) : M ⊆ N if and only if PMPN = PNPM = PM .
(ii) : M⊥N if and only if PMPN = PNPM = 0.

Proof. It first follows from Proposition 13.14 that PM ∈ P.
Indeed the inverse of the correspondence is given by the following. If we let Q ∈ P and M =
Q(X), then M is closed because M = ker(I − Q) and I − Q is bounded. Also it is clear that
X = Q(X) ⊕ (I − Q)X with kerQ = M⊥. Hence M is the corresponding closed subspace of X,
that is M ∈M and PM = Q as desired.
For the final assertion, Part (i) and (ii) follow immediately from the orthogonal decompositions
X = M⊕M⊥ = N⊕N⊥ and together with the clear facts that M ⊆ N if and only if N⊥ ⊆M⊥. �

14. Spectral Theory I

Definition 14.1. Let E be a normed space and let T ∈ B(E). The spectrum of T , write σ(T ), is
defined by

σ(T ) := {λ ∈ C : T − λI is not invertible in B(E)}.

Remark 14.2. More precise, for a normed space E, an operator T ∈ B(E) is said to be invertible
in B(E) if T is an linear isomorphism and the inverse T−1 is also bounded. However, if E is
complete, the Open Mapping Theorem assures that the inverse T−1 is bounded automatically. So
if E is a Banach space and T ∈ B(E), then λ /∈ σ(T ) if and only if T − λ := T − λI is an linear
isomorphism. So λ lies in the spectrum σ(T ) if and only if T − λ is either not one-one or not
surjective.
In particular, if there is a non-zero element v ∈ X such that Tv = λv, then λ ∈ σ(T ) and λ is
called an eigenvalue of T with eigenvector v.
We also write σp(T ) for the set of all eigenvalue of T and call σp(T ) the point spectrum.

Example 14.3. Let E = Cn and T = (aij)n×n ∈ Mn(C). Then λ ∈ σ(T ) if and only if λ is an
eigenvalue of T and thus σ(T ) = σp(T ).

Example 14.4. Let E = (c00(N), ‖ · ‖∞) (note that c00(N) is not a Banach space). Define the map
T : c00(N)→ c00(N) by

Tx(k) :=
x(k)

k + 1
for x ∈ c00(N) and i ∈ N.
Then T is bounded, in fact, ‖Tx‖∞ ≤ ‖x‖∞ for all x ∈ c00(N).
On the other hand, we note that if λ ∈ C and x ∈ c00(N), then

(T − λ)x(k) = (
1

k + 1
− λ)x(k).
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From this we see that σp(T ) = {1, 12 ,
1
3 , ...}. And if λ /∈ {1, 12 ,

1
3 , ...}, then T − λ is an linear

isomorphism and its inverse is given by

(T − λ)−1x(k) = (
1

k + 1
− λ)−1x(k).

So, (T − λ)−1 is unbounded if λ = 0 and thus 0 ∈ σ(T ).
On the other hand, if λ 6= 0, then (T − λ)−1 is bounded. In fact, if λ = a + ib 6= 0, for a, b ∈ R,

then η := min
k
| 1

1 + k
− a|2 + |b|2 > 0 because λ /∈ {1, 12 ,

1
3 , ...}. This gives

‖(T − λ)−1‖ = sup
k∈N
|( 1

k + 1
− λ)−1| < η−1 <∞.

It can now be concluded that σ(T ) = {1, 12 ,
1
3 , ...} ∪ {0}.

Proposition 14.5. Let E be a Banach space and T ∈ B(E). Then

(i) : I − T is invertible in B(E) whenever ‖T‖ < 1.
(ii) : If |λ| > ‖T‖, then λ /∈ σ(T ).

(iii) : σ(T ) is a compact subset of C.
(iv) : If we let GL(E) the set of all invertible elements in B(E), then GL(E) is an open subset

of B(E) with respect to the ‖ · ‖-topology.

Proof. Notice that since B(E) is complete, Part (i) clearly follows from the following equality
immediately:

(I − T )(I + T + T 2 + · · · · · ·+ TN−1) = I − TN

for all N ∈ N.
For Part (ii), if |λ| > ‖T‖, then by Part (i) , we see that I − 1

λT is invertible and so is λI − T .
This implies λ /∈ σ(T ).
For Part (iii), since σ(T ) is bounded by Part (ii), it needs to show that σ(T ) is closed.
Let c ∈ C \ σ(T ). It needs to find r > 0 such that µ /∈ σ(T ) as |µ− c| < r. Note that since T − c is
invertible, then for µ ∈ C, we have T−µ = (T−c)−(µ−c) = (T−c)(I−(µ−c)(T−c)−1). Therefore,

if ‖(µ− c)(T − c)−1)‖ < 1, then T − µ is invertible by Part (i). So if we take 0 < r <
1

‖(T − c)−1‖
,

then r is as desired, that is, B(c, r) ⊆ C \ σ(T ). Hence σ(T ) is closed.
For the last assertion, let T ∈ GL(E). Notice that for any S ∈ B(E), we have ‖T − S‖ ≤
‖T‖‖I − T−1S‖. So if ‖S‖ < 1

‖T−1‖
, then T − S is invertible by Part (i). Therefore we have

B(T, 1
‖T−1‖) ⊆ GL(E).

The proof is finished. �

Corollary 14.6. If U is a unitary operator on a Hilbert space X, then σ(U) ⊆ {λ ∈ C : |λ| = 1}.

Proof. Since ‖U‖ = 1, we have σ(U) ⊆ {λ ∈ C : |λ| ≤ 1} by Proposition 14.5(ii).
Now if |λ| < 1, then ‖λU∗‖ < 1. By using Proposition 14.5 again, we have I − λU∗ is invertible.
This implies that U − λ = U(I − λU∗) is also invertible and thus λ /∈ σ(U). �

Example 14.7. Let E = `2(N) and D ∈ B(E) be the right unilateral shift operator as in Example13.8.
Recall that Dx(k) := x(k − 1) for i ∈ N and x(−1) := 0. Then σp(D) = ∅ and σ(D) = {λ ∈ C :
|λ| ≤ 1}.
We first claim that σp(D) = ∅.
Suppose that λ ∈ C and x ∈ `2(N) satisfy the equation Dx = λx. Then by the definition of D, we
have

x(k − 1) = λx(k) · · · · · · · · · (∗)
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for all k ∈ N.
If λ 6= 0, then we have x(k) = λ−1xk−1 for all i ∈ N. Since x(−1) = 0, this forces x(k) = 0 for all
i, that is x = 0 in `2(N).
On the other hand if λ = 0, the Eq.(∗) gives x(k − 1) = 0 for all k and so x = 0 again.
Therefore σp(D) = ∅.
Finally, we are going to show σ(D) = {λ ∈ C : |λ| ≤ 1}.
Note that since D is an isometry, ‖D‖ = 1. Proposition 14.5 tells us that

σ(D) ⊆ {λ ∈ C : |λ| ≤ 1}.
Notice that since σp(D) is empty, it suffices to show that D− µ is not surjective for all µ ∈ C with
|µ| ≤ 1.
Now suppose that there is λ ∈ C with |λ| ≤ 1 such that D − λ is surjective.
We consider the case when |λ| = 1 first.
Let e1 = (1, 0, 0, ...) ∈ `2(N). Then by the assumption, there is x ∈ `2(N) such that (D − λ)x = e1
and thus Dx = λx+ e1. This implies that

x(k − 1) = Dx(k) = λx(k) + e1(k)

for all k ∈ N. From this we have x(0) = −λ−1 and x(k) = −λ−kx(0) for all k ≥ 1 because since
e1(0) = 1 and e1(k) = 0 for all k ≥ 1. Also since |λ| = 1, it turns out that |x(0)| = |x(k)| for all
k ≥ 1. As x ∈ `2(N), this forces x = 0. However, it is absurd because Dx = λx+ e1.
Now we consider the case when |λ| < 1.
Notice that by Proposition 13.13, we have

im(D − λ)
⊥

= ker(D − λ)∗ = ker(D∗ − λ).

Thus if D − λ is surjective, we have ker(D∗ − λ) = (0) and hence λ /∈ σp(D∗).
Notice that the adjoint D∗ of D is given by the left shift operator, that is,

D∗x(k) = x(k + 1) · · · · · · · · · (∗∗)
for all k ∈ N.
Now when D∗x = µx for some µ ∈ C and x ∈ `2(N), by using Eq.(∗∗), which is equivalent to saying
that

x(k + 1) = µx(k)

for all k ∈ N. So as |λ| = |λ| < 1, if we set x(0) = 1 and x(k + 1) = λ
k
x(0) for all k ≥ 1, then

x ∈ `2(N) and D∗x = λx. Hence λ ∈ σp(D∗) which leads to a contradiction.
The proof is finished.

15. Spectral Theory II

Throughout this section, let H be a complex Hilbert space.

Lemma 15.1. Let T ∈ B(H) be a normal operator (recall that T ∗T = TT ∗). Then T is invertible
in B(H) if and only if there is c > 0 such that ‖Tx‖ ≥ c‖x‖ for all x ∈ H.

Proof. The necessary part is clear.
Now we are going to show the converse. We first to show the case when T is selfadjoint. It is clear
that T is injective from the assumption. So by the Open Mapping Theorem, it remains to show
that T is surjective.

In fact since kerT = imT ∗
⊥

and T = T ∗, we see that the image of T is dense in H.
Now if y ∈ H, then there is a sequence (xn) in H such that Txn → y. So (Txn) is a Cauchy
sequence. From this and the assumption give us that (xn) is also a Cauchy sequence. If xn
converges to x ∈ H, then y = Tx. Therefore the assertion is true when T is selfadjoint.
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Now if T is normal, then we have ‖T ∗x‖ = ‖Tx‖ ≥ c‖x‖ for all x ∈ H by Proposition 13.11(ii).
Therefore, we have ‖T ∗Tx‖ ≥ c‖Tx‖ ≥ c2‖x‖. Hence T ∗T still satisfies the assumption. Notice
that T ∗T is selfadjoint. So we can apply the previous case to know that T ∗T is invertible. This
implies that T is also invertible because T ∗T = TT ∗.
The proof is finished. �

Definition 15.2. Let T ∈ B(X). We say that T is positive, write T ≥ 0, if (Tx, x) ≥ 0 for all
x ∈ H.

Remark 15.3. It is clear that a positive operator is selfadjoint by Proposition 13.12 at once.
In particular, all projections are positive.

Proposition 15.4. Let T ∈ B(H). We have

(i) : If T ≥ 0, then T + I is invertible.
(ii) : If T is self-adjoint, then σ(T ) ⊆ R. In particular, when T ≥ 0, we have σ(T ) ⊆ [0,∞).

Proof. For Part (i), we assume that T ≥ 0. This implies that

‖(I + T )x‖2 = ‖x‖2 + ‖Tx‖2 + 2(Tx, x) ≥ ‖x‖2

for all x ∈ H. So the invertibility of I + T follows from Lemma 15.1.
For Part (ii), we first claim that T + i is invertible. Indeed, it follows from (T + i)∗(T + i) = T 2 + I
and Part (i) immediately.
Now if λ = a+ ib ∈ σ(T ) where a, b ∈ R with b 6= 0, then T − λ = −b(−1b (T − a) + i) is invertible

because −1b (T − a) is selfadjoint.
Finally we are going to show σ(T ) ⊆ [0,∞) when T ≥ 0. Notice that since σ(T ) ⊆ R, it suffices to
show that T − c is invertible if c < 0. Indeed, if c < 0, then we see that T − c = −c(I + (−1c T )) is

invertible by the previous assertion because −1c T ≥ 0.
The proof is finished. �

Remark 15.5. In Proposition 15.4, we have shown that if T is selfadjoint, then σ(T ) ⊆ R. How-
ever, the converse does not hold. For example, consider H = C2 and

T =

(
0 1
0 0

)
.

Theorem 15.6. Let T ∈ B(H) be a selfadjoint operator. Put

M(T ) := sup
‖x‖=1

(Tx, x) and m(T ) = inf
‖x‖=1

(Tx, x).

For convenience, we also write M = M(T ) and m = m(T ) if there is no confusion.
Then we have

(i) : ‖T‖ = max{|m|, |M |}.
(ii) : {m,M} ⊆ σ(T ).

(iii) : σ(T ) ⊆ [m,M ].

Proof. Notice that m and M are defined because (Tx, x) is real for all x ∈ H by Proposition 13.12
(ii). Also Part(i) can be obtained by using Lemma 13.12 (ii) again.
For Part (ii), we first claim that M ∈ σ(T ) if T ≥ 0. Notice that 0 ≤ m ≤ M = ‖T‖ in this
case by Lemma 13.12. Then there is a sequence (xn) in H with ‖xn‖ = 1 for all n such that
(Txn, xn)→M = ‖T‖. Then we have

‖(T −M)xn‖2 = ‖Txn‖2 +M2‖xn‖2 − 2M(Txn, xn) ≤ ‖T‖2 +M2 − 2M(Txn, xn)→ 0.
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So by Lemma 15.1 we have shown that T −M is not invertible and hence M ∈ σ(T ) if T ≥ 0.
Now for any selfadjoint operator T if we consider T −m, then T −m ≥ 0. Thus we have M −m =
M(T −m) ∈ σ(T −m) by the previous case. It is clear that σ(T − c) = σ(T ) − c for all c ∈ C.
Therefore we have M ∈ σ(T ) for any self-adjoint operator.
We are now claiming that m(T ) ∈ σ(T ). Notice that M(−T ) = −m(T ). So we have −m(T ) ∈
σ(−T ). It is clear that σ(−T ) = −σ(T ). Then m(T ) ∈ σ(T ).
Finally, we are going to show σ(T ) ⊆ [m,M ].
Indeed, since T −m ≥ 0, then by Proposition 15.4, we have σ(T )−m = σ(T −m) ⊆ [0,∞). This
gives σ(T ) ⊆ [m,∞).
On the other hand, similarly, we consider M−T ≥ 0. Then we get M−σ(T ) = σ(M−T ) ⊆ [0,∞).
This implies that σ(T ) ⊆ (−∞,M ]. The proof is finished. �

16. Compact operators on a Hilbert space

Throughout this section, let H be a complex Hilbert space.

Definition 16.1. A linear operator T : H → H is said to be compact if for every bounded sequence
(xn) in H, (T (xn)) has a norm convergent subsequence.
Write K(H) for the set of all compact operators on H and K(H)sa for the set of all compact
selfadjoint operators.

Remark 16.2. Let U be the closed unit ball of H. It is clear that T is compact if and only if the
norm closure T (U) is a compact subset of H. Thus if T is compact, then T is bounded automatically
because every compact set is bounded.
Also it is clear that if T has finite rank, that is dim imT < ∞, then T must be compact because
every closed and bounded subset of a finite dimensional normed space is equivalent to it is compact.

Example 16.3. The identity operator I : H → H is compact if and only if dimH <∞.

Example 16.4. Let H = `2({1, 2...}). Define Tx(k) := x(k)
k for k = 1, 2.... Then T is compact.

In fact, if we let (xn) be a bounded sequence in `2, then by the diagonal argument, we can find
a subsequence ym := Txm of Txn such that lim

m→∞
ym(k) = y(k) exists for all k = 1, 2... Let

L := supn ‖xn‖22. Since |ym(k)|2 ≤ L
k2

for all m, k, we have y ∈ `2. Now let ε > 0. Then one can

find a positive integer N such that
∑

k≥N 4L/k2 < ε. So we have∑
k≥N
|ym(k)− y(k)|2 <

∑
k≥N

4L

k2
< ε

for all m. On the other hand, since lim
m→∞

ym(k) = y(k) for all k, we can choose a positive integer

M such that
N−1∑
k=1

|ym(k)− y(k)|2 < ε

for all m ≥M . Finally, we have ‖ym − y‖22 < 2ε for all m ≥M .

Theorem 16.5. Let T ∈ B(H). Then T is compact if and only if T maps every weakly convergent
sequence in H to a norm convergent sequence.
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Proof. We first assume that T ∈ K(H). Let (xn) be a weakly convergent sequence in H. Since H
is reflexive, (xn) is bounded by the Uniform Boundedness Theorem. So we can find a subsequence
(xj) of (xn) such that (Txj) is norm convergent. Let y := limj Txj . We claim that y = limn Txn.
Suppose not. Then by the compactness of T again, we can find a subsequence (xi) of (xn) such
that Txi converges to y′ with y 6= y′. Thus there is z ∈ H such that (y, z) 6= (y′, z). On the other
hand, if we let x be the weakly limit of (xn), then (xn, w)→ (x,w) for all w ∈ H. So we have

(y, z) = lim
j

(Txj , z) = lim
j

(xj , T
∗(z)) = (x, T ∗z) = (Tx, z).

Similarly, we also have (y′, z) = (Tx, z) and hence (y, z) = (y′, z) that contradicts to the choice of
z.
For the converse, let (xn) be a bounded sequence. Then by Theorem 12.12, (xn) has a weakly
convergent subsequence. Thus T (xn) has a norm convergent subsequence by the assumption at
once. So T is compact. �

Proposition 16.6. Let S, T ∈ K(H). Then we have

(i) : αS + βT ∈ K(H) for all α, β ∈ C;
(ii) : TQ and QT ∈ K(H) for all Q in B(H);

(iii) : T ∗ ∈ K(H).

Moreover K(H) is normed closed in B(H).
Hence K(H) is a closed ∗-ideal of B(H).

Proof. (i) and (ii) are clear.
For property (iii), let (xn) be a bounded sequence. Then (T ∗xn) is also bounded. So TT ∗xn has a
convergent subsequence TT ∗xnk by the compactness of T . Notice that we have

‖T ∗xnk − T
∗xnl‖

2 = (TT ∗(xnk − xnl), xnk − xnl)
for all nk, nl. This implies that (T ∗xnk) is a Cauchy sequence and thus is convergent since (xnk) is
bounded.
Finally we are going to show K(H) is closed. Let (Tm) be a sequence in K(H) such that Tm → T in
norm. Let (xn) be a bounded sequence in H. Then by the diagonal argument there is a subsequence
(xnk) of (xn) such that lim

k
Tmxnk exists for all m. Now let ε > 0. Since limm Tm = T , there is a

positive integer N such that ‖T − TN‖ < ε. On the other hand, there is a positive integer K such
that ‖TNxnk − TNxnk′‖ < ε for all k, k′ ≥ K. So we can now have

‖Txnk − Txnk′‖ ≤ ‖Txnk − TNxnk‖+ ‖TNxnk − TNxnk′‖+ ‖TNxnk′ − Txnk′‖ ≤ (2L+ 1)ε

for all k, k′ ≥ K where L := supn ‖xn‖. Thus limk Txnk exists. It can now be concluded that
T ∈ K(H). The proof is finished. �

Corollary 16.7. Let T ∈ K(H). If dimH =∞, then 0 ∈ σ(T ).

Proof. Suppose that 0 /∈ σ(T ). Then T−1 exists in B(H). Proposition 16.1 gives I = TT−1 ∈
K(H). This implies dimH <∞. �

Proposition 16.8. Let T ∈ K(H) and let c ∈ C with c 6= 0. Then T − c has a closed range.

Proof. Notice that since
1

c
T ∈ K(H), so if we consider

1

c
T − I, we may assume that c = 1.

Let S = T − I. Let xn be a sequence in H such that Sxn → x ∈ H in norm. By considering
the orthogonal decomposition H = kerS ⊕ (kerS)⊥, we write xn = yn ⊕ zn for yn ∈ kerS and
zn ∈ (kerS)⊥. We first claim that (zn) is bounded. Suppose not. By considering a subsequence

of (zn), we may assume that we may assume that ‖zn‖ → ∞. Put vn :=
zn
‖zn‖

∈ (kerS)⊥.



35

Since Szn = Sxn → x, we have Svn → 0. On the other hand, since T is compact, and (vn) is
bounded, by passing a subsequence of (vn), we may also assume that Tvn → w. Since S = T − I,
vn = Tvn − Svn → w − 0 = w ∈ (kerS)⊥. Also from this we have Svn → Sw. On the other hand,
we have Sw = limn Svn = limn Tvn − limn vn = w − w = 0. So w ∈ kerS ∩ (kerS)⊥. It follows
that w = 0. However, since vn → w and ‖vn‖ = 1 for all n. It leads to a contradiction. So (zn) is
bounded.
Finally we are going to show that x ∈ imS. Now since (zn) is bounded, (Tzn) has a convergent
subsequence (Tznk). Let limk Tznk = z. Then we have

znk = Sznk − Tznk = Sxnk − Tznk → x− z.

It follows that x = limk Sxnk = limk Sznk = S(x− z) ∈ imS. The proof is finished. �

Theorem 16.9. Fredholm Alternative Theorem : Let T ∈ K(H)sa and let 0 6= λ ∈ C. Then
T − λ is injective if and only if T − λ is surjective.

Proof. Since T is selfadjoint, σ(T ) ⊆ R. So if λ ∈ C \ R, then T − λ is invertible. So the result
holds automatically.
Now consider the case λ ∈ R \ {0}.
Then T −λ is also selfadjoint. From this and Proposition 13.13, we have ker(T −λ) = (im(T −λ))⊥

and (ker(T − λ))⊥ = im(T − λ).
So the proof is finished by using Proposition 16.8 immediately. �

Corollary 16.10. Let T ∈ K(H)sa. Then we have σ(T ) \ {0} = σp(T ) \ {0}. Consequently if
the values m(T ) and M(T ) which are defined in Theorem 15.6 are non-zero, then both are the
eigenvalues of T and ‖T‖ = max

λ∈σp(T )
|λ|.

Proof. It follows from the Fredholm Alternative Theorem at once. This together with Theorem
15.6 imply the last assertion. �

Example 16.11. Let T ∈ B(`2) be defined as in Example 16.4. We have shown that T ∈ K(`2)
and it is clear that T is selfadjoint. Then by Corollary 16.10 and Corollary 16.7, we see that
σ(T ) = {0, 1, 12 ,

1
3 , .....}.

Lemma 16.12. Let T ∈ K(H)sa and let Eλ := {x ∈ H : Tx = λx} for λ ∈ σ(T ) \ {0}, that is the
eigenspace of T corresponding to λ. If we fix µ ∈ σ(T ) \ {0} and put Iµ := {λ ∈ σ(T ) : |λ| = |µ|},
then we have

dim
⊕
λ∈Iµ

Eλ <∞.

Proof. We first notice that dimEλ <∞ for all λ ∈ σp(T ) \ {0} because the restriction T |Eλ is also
a compact operator on Eλ.
On the other hand, since T is selfajoint, we also have Eλ⊥Eλ′ for λ, λ′ ∈ σp(T ) with λ 6= λ′. Let
V :=

⊕
λ∈Iµ Eλ. Suppose that dimV =∞. Then |Iµ| =∞. So, we can find an infinite sequence in

Iµ such that λm 6= λn for m 6= n. Now choose vn ∈ Eλn with ‖vn‖ = 1 for each λn. Then vn⊥vm
for n 6= m. This implies that ‖Tvn − Tvm‖2 = |λn|2 + |λm|2 = 2|µ|2 > 0 for m 6= n. So (Tvn) has
no convergent subsequences which contradicts to T being compact. �

Theorem 16.13. Let T ∈ K(H)sa. And suppose that dimH =∞. Then σ(T ) = {λ1, λ2, ....}∪{0},
where (λn) is a sequence of real numbers with λn 6= λm for m 6= n and |λn| ↓ 0.
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Proof. Note that since ‖T‖ = max(|M(T )|, |m(T )|) and σ(T ) \ {0} = σp(T ) \ {0}. So by Corollary

16.10, there is |λ1| = max
λ∈σp(T )

|λ| = ‖T‖. Since dimEλ1 < ∞, then E⊥λ1 6= 0. Then by considering

the restriction of T2 := T |E⊥λ1 6= 0, there is |λ2| = maxλ∈σp(T2) |λ| = ‖T2‖. Notice that λ2 ∈ σp(T )
and |λ2| ≤ |λ1| because ‖T2‖ ≤ ‖T‖. To repeat the same step, we can get a sequence (λn) such
that (|λn|) is decreasing.
Now we claim that limn |λn| = 0.
Otherwise, there is η > 0 such that |λn| ≥ η for all n. If we let vn ∈ Eλn with ‖vn‖ = 1 for all n.
Notice that since dimH = ∞ and dimEλ < ∞, for any λ ∈ σp(T ) \ {0}, there are infinite many
λn’s. Then wn := 1

|λn|vn is a bounded sequence and ‖Twn − Twn‖2 = ‖vn − vm‖2 = 2 for m 6= n.

This is a contradiction since T is compact. So limn |λn| = 0.
Finally we need to check σ(T ) = {λ1, λ2, ...} ∪ {0}.
In fact, let µ ∈ σp(T ). Since |λn| ↓ 0, we can find a subsequence n1 < n2 < .... of positive integers
such that

|λ1| = ... = |λn1 | > |λn1+1| = ... = |λn2 | > |λn2+1| = .... = |λn3 | > |λn3+1| = ....

Then we can choose N such that |λnN+1| < |µ| ≤ |λnN |. Notice that by the construction of λn’s
implies µ = λj for some nN−1 + 1 ≤ j ≤ nN .
The proof is finished. �

Theorem 16.14. Let T ∈ K(H)sa and let (λn) be given as in Theorem 16.13. For each λ ∈
σp(T ) \ {0}, put d(λ) := dimEλ < ∞. Let {eλ,i : i = 1, ..., d(λ)} be an orthonormal base for Eλ.
Then we have the following orthogonal decomposition:

(16.1) H = kerT ⊕
∞⊕
n=1

Eλn .

Moreover B := {eλ,i : λ ∈ σp(T ) \ {0}; i = 1, .., d(λ)} forms an orthonormal base of T (H).

Also the series

∞∑
n=1

λnPn norm converges to T , where Pn is the orthogonal projection from H onto

Eλn, that is, Pn(x) :=

d(λn)∑
i=1

(x, eλn,i)eλn,i, for x ∈ H.

Proof. Put E =
⊕∞

n=1Eλn . It is clear that kerT ⊆ E⊥. On the other hand, if the restriction

T0 := T |E⊥ 6= 0, then there exists an non-zero element µ ∈ σp(T0) ⊆ σp(T ) because T0 ∈ K(E⊥).

It is absurd because µ 6= 1
λi

for all i. So T |E⊥ = 0 and hence E⊥ ⊆ kerT . So we have the

decomposition (16.1). And from this we see that the family B forms an orthonormal base of
(kerT )⊥. On the other, we have (kerT )⊥ = imT ∗ = imT . Therefore, B is an orthonormal base for

T (H) as desired.
For the last assertion, it needs to show that the series

∑∞
n=1 λnPn converges to T in norm. Notice

that if we put Sm :=
∑m

n=1 λnPn, then by the decomposition (16.1), lim
m→∞

Smx = Tx for all x ∈ H.

So it suffices to show that (Sm)∞m=1 is a Cauchy sequence in B(H). In fact we have

‖λm+1Pm+1 + · · · · · ·+ λm+pPm+p‖ = |λm+1|

for all m, p ∈ N because Eλn⊥Eλm for m 6= n and |λn| is decreasing. This gives that (Sn) is a
Cauchy sequence since |λn| ↓ 0. The proof is finished. �

Corollary 16.15. T ∈ K(H) if only if T can be approximated by finite rank operators.
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